Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phage-assisted evolution of compact Cas9 variants targeting a simple NNG PAM

An Author Correction to this article was published on 05 January 2024

This article has been updated

Abstract

Compact Cas9 nucleases hold great promise for therapeutic applications. Although several compact Cas9 nucleases have been developed, many genomic loci still could not be edited due to a lack of protospacer adjacent motifs (PAMs). We previously developed a compact SlugCas9 recognizing an NNGG PAM. Here we demonstrate that SlugCas9 displays comparable activity to SpCas9. We developed a simple phage-assisted evolution to engineer SlugCas9 for unique PAM requirements. Interestingly, we generated a SlugCas9 variant (SlugCas9-NNG) that could recognize an NNG PAM, expanding the targeting scope. We further developed a SlugCas9-NNG-based adenine base editor and demonstrated that it could be delivered by a single adeno-associated virus to disrupt PCSK9 splice donor and splice acceptor. These genome editors greatly enhance our ability for in vivo genome editing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phage-assisted evolution of SlugCas9 toward an NNG PAM.
Fig. 2: Second-round evolution.
Fig. 3: Analysis of SlugCas9-NNG specificity in HEK293T cells.
Fig. 4: Genome editing at endogenous loci.
Fig. 5: Base editing with SlugABE-NNG in human cells.

Similar content being viewed by others

Data availability

All HTS data have been uploaded to the NCBI Sequence Read Archive database under accession code PRJNA985249. There are no restrictions on data availability. Source data are provided with this paper.

Change history

References

  1. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xie, Y. et al. An episomal vector-based CRISPR/Cas9 system for highly efficient gene knockout in human pluripotent stem cells. Sci. Rep. 7, 2320 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. Qi, T. et al. Base editing mediated generation of point mutations into human pluripotent stem cells for modeling disease. Front. Cell Dev. Biol. 8, 590581 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Wang, B. et al. krCRISPR: an easy and efficient strategy for generating conditional knockout of essential genes in cells. J. Biol. Eng. 13, 35 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang, S. et al. Identification of SaCas9 orthologs containing a conserved serine residue that determines simple NNGG PAM recognition. PLoS Biol. 20, e3001897 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mojica, F. J. M., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Paquet, D. et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125–129 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Agudelo, D. et al. Versatile and robust genome editing with Streptococcus thermophilus CRISPR1–Cas9. Genome Res. 30, 107–117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chatterjee, P., Jakimo, N. & Jacobson, J. M. Minimal PAM specificity of a highly similar SpCas9 ortholog. Sci. Adv. 4, eaau0766 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chatterjee, P. et al. An engineered ScCas9 with broad PAM range and high specificity and activity. Nat. Biotechnol. 38, 1154–1158 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Kleinstiver, B. P. et al. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller, S. M. et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat. Biotechnol. 38, 471–481 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR–Cas9 variants. Science 368, 290–296 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nishimasu, H. et al. Engineered CRISPR–Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Edraki, A. et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol. Cell 73, 714–726 e714 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, E. et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8, 14500 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao, N. et al. Characterization of Brevibacillus laterosporus Cas9 (BlatCas9) for mammalian genome editing. Front. Cell Dev. Biol. 8, 583164 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hu, Z. et al. Discovery and engineering of small SlugCas9 with broad targeting range and high specificity and activity. Nucleic Acids Res. 49, 4008–4019 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, S. et al. Compact SchCas9 recognizes the simple NNGR PAM. Adv. Sci. 9, e2104789 (2022).

    Article  MathSciNet  Google Scholar 

  27. Wei, J. et al. Closely related type II-C Cas9 orthologs recognize diverse PAMs. eLife https://doi.org/10.7554/eLife.77825 (2022).

  28. Huang, T. P. et al. High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01410-2 (2022).

  29. Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Badran, A. H. & Liu, D. R. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat. Commun. 6, 8425 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Nishimasu, H. et al. Crystal structure of Staphylococcus aureus Cas9. Cell 162, 1113–1126 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zettler, J., Schutz, V. & Mootz, H. D. The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett. 583, 909–914 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Miller, S. M., Wang, T. & Liu, D. R. Phage-assisted continuous and non-continuous evolution. Nat. Protoc. 15, 4101–4127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu, Z. et al. A compact Cas9 ortholog from Staphylococcus auricularis (SauriCas9) expands the DNA targeting scope. PLoS Biol. 18, e3000686 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leenay, R. T. et al. Identifying and visualizing functional PAM diversity across CRISPR–Cas systems. Mol. Cell 62, 137–147 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu, Z. et al. A highly sensitive GFP activation assay for detection of DNA cleavage in cells. Front. Cell Dev. Biol. 9, 771248 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Walton, R. T., Hsu, J. Y., Joung, J. K. & Kleinstiver, B. P. Scalable characterization of the PAM requirements of CRISPR–Cas enzymes using HT-PAMDA. Nat. Protoc. 16, 1511–1547 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. NM_000335.5(SCN5A):c.1363A>G (p.Thr455Ala). National Center for Biotechnology Information (2016); https://www.ncbi.nlm.nih.gov/clinvar/variation/201550/#id_first

  43. Huang, T. P., Newby, G. A. & Liu, D. R. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat. Protoc. 16, 1089–1128 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, H. et al. Adenine base editing in vivo with a single adeno-associated virus vector. GEN Biotechnol. 1, 285–299 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davis, J. R. et al. Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nat. Biomed. Eng. 6, 1272–1283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr. & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652 e5629 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key Research and Development Program of China (2021YFC2701103 to Yongming W., 2021YFA0910602 to Yongming W.); the National Natural Science Foundation of China (82370254 to Yongming W., 82070258 to Yongming W.); the Open Research Fund of State Key Laboratory of Genetic Engineering, Fudan University (No. SKLGE-2104 to Yongming W.); the Science and Technology Research Program of Shanghai (19DZ2282100 to Yongming W., 23ZR1426000 to Yongming W.); the Scientific Research Foundation of Peking University Shenzhen Hospital (KYQD202100X to W.V.Z.); Shenzhen Science and Technology Program (JCYJ20220818102818039 to W.V.Z.); BYD Charity Foundation (PUSH-BYD JCYJ202201 to W.V.Z., PUSH-BYD JCYJ202204 to W.V.Z.); Shenzhen Biomedical Industry Major Public Service Platform and Core Technology Research Special Support Plan (XMHT20220104048 to W.V.Z.); National Natural Science Foundation of China (Nos. 82222007 to J.T., 82170281 to J.T.); Henan Province Medical Science and Technology Key Joint Project (SBGJ202101012 to J.T.); Funding for Scientific Research and Innovation Team of The First Affiliated Hospital of Zhengzhou University (QNCXTD2023001 to J.T.).

Author information

Authors and Affiliations

Authors

Contributions

T.Q. and Yongming W. designed the research. T.Q. and J.L. performed evolution. T.Q., Yao W., S.G. and Y.T. conducted human cell experiments. T.Q. and Y.Y. analyzed the data. Q.H. employed AlphaFold to predict the structures of SlugCas9 and SlugCas9-NNG. T.Q., Yongming W., and Yao W. wrote the manuscript. Yongming W., J.T. and W.V.Z. guided the project.

Corresponding authors

Correspondence to Junnan Tang, Wei V. Zheng or Yongming Wang.

Ethics declarations

Competing interests

Yongming W. and T.Q. have submitted a patent application (2023106924996) on the basis the results reported in this study. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Pranam Chatterjee, Benjamin W. Thuronyi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 SlugCas9 exhibits comparable editing activity to SpCas9.

a, Schematic of the Cas9 expression constructs. Both SpCas9 and SlugCas9 constructs have the same backbone. b, Expression levels of SpCas9 and SlugCas9 measured by RT-qPCR. Two-tailed, paired Student’s t-test was used to determine the statistical significance between the two groups. Data are mean + s.d. of n = 3 independent experiments. c, Schematic of sgRNA design. d, Indel frequency of SpCas9 and SlugCas9 at 23 endogenous target sites in HEK293T cells. Cas9 and sgRNA expression plasmids were transfected into HEK293T cells, followed by puromycin selection. Data are mean + s.d. of n = 3 independent experiments. e, Summary of the indel frequency of SpCas9 and SlugCas9. Two-tailed, paired Student’s t-test was used to determine the statistical significance between the two groups. The mean and s.d. of all individual values of n = 3 independent biological replicates are plotted. Statistical source data are available (Source Data Extended Data Fig. 1).

Source data

Extended Data Fig. 2 Split of SlugABE.

a, Sanger sequencing of the target sites on the T7RNAP gene-edited by SlugABE or split SlugABE. Dotted boxes indicate the target adenines (shown in red). b, Black arrows indicate the positions of the split sites on SlugCas9. Amino acid positions are shown above.

Extended Data Fig. 3 Phage propagation level detected by PCR amplification.

a, PCR amplification of the phage genome (1,615 bp). 1 µL of filtered supernatant containing phages from the phage propagation assay is used as a template. Forward and reverse primers are indicated by red arrows. b, PCR products are analyzed by agarose gel electrophoresis. The expected PCR band size (1,615 bp) is indicated on the right by the black arrow. Ctr, a titer of 106 phages, is input into 2 ml of medium containing bacteria (OD600 = 0.5) and immediately filtered without culture. The PAM for each site is shown. The experiment was independently repeated three times and yielded similar results (Source Data Extended Data Fig. 3).

Source data

Extended Data Fig. 4 Dominant mutations obtained from the first-round evolution.

a, Mutations detected by Sanger sequencing. Mutations are marked in red. b, Influence of N984S on phage propagation. Data are mean + s.d. of n = 3 independent experiments. c, Influence of K1016I on phage propagation. Data are mean + s.d. of n = 3 independent experiments. Statistical source data are available (Source Data Extended Data Fig. 4).

Source data

Extended Data Fig. 5 A GFP-activation assay for PAM identification.

a, PAM logos of SlugCas9-N984S and SlugCas9-K1016I identified by the GFP-activation assay. b, PAM wheels of SlugCas9, SlugCas9-N984S, SlugCas9-K1016I, and SlugCas9-N984S/K1016I were identified by the GFP-activation assay.

Extended Data Fig. 6 Testing the activity of SlugCas9-N984S/K1016I using the GFP-activation reporter in HEK293T cells.

a, Schematic of the GFP-activation reporter. Dark lines indicate target sites; PAMs are indicated by red lines. b, Percentage of GFP-positive cells after genome editing by SlugCas9 or SlugCas9-N984S/K1016I. For the gating strategy, begin by drawing the FSC/SSC dual-parameter dot map, then encircle the target cell population and establish the gate R1. Subsequently, draft the GFP/SSC dual-parameter dot map. After applying Gate R1 to this map, set a gate to encircle GFP positive cells, R2, using the negative control as a reference. Two-tailed, paired Student’s t-test was used to determine the statistical significance between the two groups. A value of P < 0.05 was considered to be statistically significant (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). Data are mean + s.d. of n = 3 independent experiments. Statistical source data are available (Source Data Extended Data Fig. 6).

Source data

Extended Data Fig. 7 Structure model of SlugCas9 and SlugCas9-NNG predicted by AlphaFold.

a, SlugCas9 structure predicted by AlphaFold. b, SlugCas9-NNG structure predicted by AlphaFold. c, The SlugCas9-NNG structure is superimposed on the SlugCas9 structure.

Extended Data Fig. 8 Adenine base editing with SlugABE-NNG in human iPS cells.

A to G conversion frequencies at 10 target sites in iPS cells. The PAM for each site is shown below. Data are mean + s.d. of n = 3 independent experiments. Statistical source data are available (Source Data Extended Data Fig. 8).

Source data

Extended Data Fig. 9 Base editing with SlugCBE-NNG in human cells.

a, Schematic of the SlugCBE-NNG. b, Examples of C to T conversion at target sites in HEK293T cells. The PAM for each site is shown below. Data are mean + s.d. of n = 3 independent experiments. c, Editing window generated from 40 genomic target sites. The mean and s.d. of all individual values of n = 3 independent biological replicates are plotted. Statistical source data are available (Source Data Extended Data Fig. 9).

Source data

Extended Data Fig. 10 SlugABE-NNG can be delivered via a single AAV for genome editing.

a, Schematic of the single-AAV SlugABE-NNG. EFS represents EF1A core promoter; bGH represents bovine growth hormone polyadenylation signal; sgRNA expression cassette includes hU6 promoter, sgRNA, and seven ‘T’ terminator. b, Sequences of the five target sites. The target adenines are marked in red, and the PAM sequences are highlighted in bold.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Notes 1–8.

Reporting Summary

Supplementary Data 1

Statistical source data for Supplementary Figs. 1 and 5–10.

Supplementary Tables 1–4

Supplementary Tables 1–4.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, T., Wang, Y., Yang, Y. et al. Phage-assisted evolution of compact Cas9 variants targeting a simple NNG PAM. Nat Chem Biol 20, 344–352 (2024). https://doi.org/10.1038/s41589-023-01481-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01481-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing