Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A family of radical halogenases for the engineering of amino-acid-based products


The integration of synthetic and biological catalysis enables new approaches to the synthesis of small molecules by combining the high selectivity of enzymes with the reaction diversity offered by synthetic chemistry. While organohalogens are valued for their bioactivity and utility as synthetic building blocks, only a handful of enzymes that carry out the regioselective halogenation of unactivated \({\rm{C}}_{sp^3}{-}{\rm{H}}\) bonds have previously been identified. In this context, we report the structural characterization of BesD, a recently discovered radical halogenase from the FeII/α-ketogluturate-dependent family that chlorinates the free amino acid lysine. We also identify and characterize additional halogenases that produce mono- and dichlorinated, as well as brominated and azidated, amino acids. The substrate selectivity of this new family of radical halogenases takes advantage of the central role of amino acids in metabolism and enables engineering of biosynthetic pathways to afford a wide variety of compound classes, including heterocycles, diamines, α-keto acids and peptides.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Crystal structure of lysine halogenase BesD.
Fig. 2: Proposed mechanism of halogenation by BesD.
Fig. 3: Alanine scan of active site residues.
Fig. 4: Amino acid halogenase diversity.
Fig. 5: Engineering downstream pathways with amino acid halogenases.

Data availability

Accession codes for proteins in this study are provided in Supplementary Table 2. The PDB accession code for the BesD structure is 6NIE. Source data are available online for Figs. 35. Datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.


  1. 1.

    Koeller, K. M. & Wong, C.-H. Enzymes for chemical synthesis. Nature 409, 232–240 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    Kan, S. B. J., Huang, X., Gumulya, Y., Chen, K. & Arnold, F. H. Genetically programmed chiral organoborane synthesis. Nature 552, 132 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    Savile, C. K. et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329, 305–309 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    Harris, C., Kannan, R., Kopecka, H. & Harris, T. The role of the chlorine substituent in the antibiotic vancomycin: preparation and characterization of mono- and didechlorovancomycin. J. Am. Chem. Soc. 107, 6652–6658 (1985).

    CAS  Article  Google Scholar 

  5. 5.

    Groll, M., Huber, R. & Potts, B. C. M. Crystal structures of salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of β-lactone ring opening and a mechanism for irreversible binding. J. Am. Chem. Soc. 128, 5136–5141 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    Latham, J., Brandenburger, E., Shepherd, S. A., Menon, B. R. K. & Micklefield, J. Development of halogenase enzymes for use in synthesis. Chem. Rev. 118, 232–269 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Gkotsi, D. S., Dhaliwal, J., McLachlan, M. M., Mulholand, K. R. & Goss, R. J. Halogenases: powerful tools for biocatalysis (mechanisms applications and scope). Curr. Opin. Chem. Biol. 43, 119–126 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Neumann, C. S., Fujimori, D. G. & Walsh, C. T. Halogenation strategies in natural product biosynthesis. Chem. Biol. 15, 99–109 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    Marchand, J. A. et al. Discovery of a pathway for terminal-alkyne amino acid biosynthesis. Nature 567, 420–424 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    Vaillancourt, F. H., Yeh, E., Vosburg, D. A., O’Connor, S. E. & Walsh, C. T. Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis. Nature 436, 1191–1194 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    Nakamura, H., Schultz, E. E. & Balskus, E. P. A new strategy for aromatic ring alkylation in cylindrocyclophane biosynthesis. Nat. Chem. Biol. 13, 916–921 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Anslyn, E. V. & Dougherty, D. A. Modern Physical Organic Chemistry (University Science, 2006).

  13. 13.

    Agarwal, V. et al. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem. Rev. 117, 5619–5674 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Liang, T., Neumann, C. N. & Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Ange. Chem. Int. Ed. Engl. 52, 8214–8264 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Petrone, D. A., Ye, J. & Lautens, M. Modern transition-metal-catalyzed carbon–halogen bond formation. Chem. Rev. 116, 8003–8104 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Shilov, A. E. & Shul’pin, G. B. Activation of C−H bonds by metal complexes. Chem. Rev. 97, 2879–2932 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    Bollinger, J. M. et al. in 2-Oxoglutarate-Dependent Oxygenases (eds Hausinger R.P. & Schofield, C.J.) 95–122 (Royal Society of Chemistry, London, 2015).

  18. 18.

    Blasiak, L. C., Vaillancourt, F. H., Walsh, C. T. & Drennan, C. L. Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis. Nature 440, 368–371 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    Mitchell, A. J. et al. Structural basis for halogenation by iron- and 2-oxo-glutarate-dependent enzyme WelO5. Nat. Chem. Biol. 12, 636–640 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Vaillancourt, F. H., Yin, J. & Walsh, C. T. SyrB2 in syringomycin E biosynthesis is a nonheme FeII α-ketoglutarate- and O2-dependent halogenase. Proc. Natl Acad. Sci. USA 102, 10111–10116 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    Hillwig, M. L. & Liu, X. A new family of iron-dependent halogenases acts on freestanding substrates. Nat. Chem. Biol. 10, 6–10 (2014).

    Article  Google Scholar 

  22. 22.

    Ortega, M. A. & van der Donk, W. A. New insights into the biosynthetic logic of ribosomally synthesized and post-translationally modified peptide natural products. Cell Chem. Biol. 23, 31–44 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Runguphan, W., Qu, X. & O’Connor, S. E. Integrating carbon–halogen bond formation into medicinal plant metabolism. Nature 468, 461–464 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    Challis, G. L., Ravel, J. & Townsend, C. A. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol. 7, 211–224 (2000).

    CAS  Article  Google Scholar 

  25. 25.

    Dunwell, J. M., Purvis, A. & Khuri, S. Cupins: the most functionally diverse protein superfamily? Phytochemistry 65, 7–17 (2004).

    CAS  Article  Google Scholar 

  26. 26.

    Pandurangan, A. P., Stahlhacke, J., Oates, M. E., Smithers, B. & Gough, J. The SUPERFAMILY 2.0 database: a significant proteome update and a new webserver. Nucleic Acids Res. 47, D490–D494 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Kulik, H. J. & Drennan, C. L. Substrate placement influences reactivity in non-heme Fe(II) halogenases and hydroxylases. J. Biol. Chem. 288, 11233–11241 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Matthews, M. L. et al. Substrate-triggered formation and remarkable stability of the C−H bond-cleaving chloroferryl intermediate in the aliphatic halogenase, SyrB2. Biochemistry 48, 4331–4343 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    Puri, M., Biswas, A. N., Fan, R., Guo, Y. & Que, L. Modeling non-heme iron halogenases: high-spin oxoiron(IV)–halide complexes that halogenate C–H bonds. J. Am. Chem. Soc. 138, 2484–2487 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Galonić, D. P., Barr, E. W., Walsh, C. T., Bollinger, J. M. & Krebs, C. Two interconverting Fe(IV) intermediates in aliphatic chlorination by the halogenase CytC3. Nat. Chem. Biol. 3, 113–116 (2007).

    Article  Google Scholar 

  31. 31.

    Wong, S. D. et al. Elucidation of the Fe(IV)=O intermediate in the catalytic cycle of the halogenase SyrB2. Nature 499, 320–323 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Srnec, M. & Solomon, E. I. Frontier molecular orbital contributions to chlorination versus hydroxylation selectivity in the non-heme iron halogenase SyrB2. J. Am. Chem. Soc. 139, 2396–2407 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Matthews, M. L. et al. Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2. Proc. Natl Acad. Sci. USA 106, 17723–17728 (2009).

    CAS  Article  Google Scholar 

  34. 34.

    Mitchell, A. J. et al. Structure-guided reprogramming of a hydroxylase to halogenate its small molecule substrate. Biochemistry 56, 441–444 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Zhang, Z. et al. Crystal structure of a clavaminate synthase–Fe(II)–2-oxoglutarate–substrate–NO complex: evidence for metal centered rearrangements. FEBS Lett. 517, 7–12 (2002).

    CAS  Article  Google Scholar 

  36. 36.

    Martinie, R. J. et al. Experimental correlation of substrate position with reaction outcome in the aliphatic halogenase, SyrB2. J. Am. Chem. Soc. 137, 6912–6919 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Gerlt, J. A. Genomic enzymology: web tools for leveraging protein family sequence-function space and genome context to discover novel functions. Biochemistry 56, 4293–4308 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Matthews, M. L. et al. Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase. Nat. Chem. Biol. 10, 209–215 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Fu, G. C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes. ACS Cent. Sci. 3, 692–700 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Nyffeler, P. T., Liang, C.-H., Koeller, K. M. & Wong, C.-H. The chemistry of amine–azide interconversion: catalytic diazotransfer and regioselective azide reduction. J. Am. Chem. Soc. 124, 10773–10778 (2002).

    CAS  Article  Google Scholar 

  41. 41.

    Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl. 48, 6974–6998 (2009).

    CAS  Article  Google Scholar 

  42. 42.

    Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    CAS  Article  Google Scholar 

  43. 43.

    Gatto, G. J., Boyne, M. T., Kelleher, N. L. & Walsh, C. T. Biosynthesis of pipecolic acid by RapL, a lysine cyclodeaminase encoded in the rapamycin gene cluster. J. Am. Chem. Soc. 128, 3838–3847 (2006).

    CAS  Article  Google Scholar 

  44. 44.

    Goodman, J. L. et al. Ornithine cyclodeaminase: structure, mechanism of action, and implications for the μ-crystallin family. Biochemistry 43, 13883–13891 (2004).

    CAS  Article  Google Scholar 

  45. 45.

    Wendisch, V. F., Mindt, M. & Pérez-García, F. Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives. Appl. Microbiol. Biotechnol. 102, 3583–3594 (2018).

    CAS  Article  Google Scholar 

  46. 46.

    Takatsuka, Y., Yamaguchi, Y., Ono, M. & Kamio, Y. Gene cloning and molecular characterization of lysine decarboxylase from Selenomonas ruminantium delineate its evolutionary relationship to ornithine decarboxylases from eukaryotes. J. Bacteriol. 182, 6732–6741 (2000).

    CAS  Article  Google Scholar 

  47. 47.

    Rudman, D. & Meister, A. Transamination in Escherichia coli. J. Biol. Chem. 200, 591–604 (1953).

    CAS  PubMed  Google Scholar 

  48. 48.

    Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).

    CAS  Article  Google Scholar 

  49. 49.

    Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113 (2004).

    Article  Google Scholar 

  50. 50.

    Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).

    CAS  Article  Google Scholar 

  51. 51.

    Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26, 680–682 (2010).

    CAS  Article  Google Scholar 

  52. 52.

    Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275–282 (1992).

    CAS  PubMed  Google Scholar 

  53. 53.

    Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    CAS  Article  Google Scholar 

  54. 54.

    Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  Article  Google Scholar 

  55. 55.

    Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    CAS  Article  Google Scholar 

  56. 56.

    Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  Article  Google Scholar 

  57. 57.

    Skubák, P. & Pannu, N. S. Automatic protein structure solution from weak X-ray data. Nat. Commun. 4, 2777 (2013).

    Article  Google Scholar 

  58. 58.

    Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D Biol. Crystallogr. 62, 1002–1011 (2006).

    Article  Google Scholar 

  59. 59.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  Article  Google Scholar 

  60. 60.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).

    CAS  Article  Google Scholar 

Download references


This work received support from the National Science Foundation (CHE-1710588) and the Department of Energy (DOE/LBNL DEAC02-05CH11231, FWP CH030201). M.E.N. acknowledges the support of a National Science Foundation graduate research fellowship. J.L.M. acknowledges the support of a National Institutes of Health NRSA training grant (1 T32 GMO66698). J.A.M. acknowledges the support of a University of California, Berkeley Chancellor’s fellowship, Howard Hughes Medical Institute Gilliam fellowship and National Institutes of Health NRSA training grant (1 T32 GMO66698). X-ray data were collected at the Advanced Light Source Beamline 8.3.1, which is operated by the University of California Office of the President, Multicampus Research Programs and Initiatives (MR-15-328599), the National Institutes of Health (R01 GM124149 and P30 GM124169), Plexxikon and the Integrated Diffraction Analysis Technologies program of the U.S. Department of Energy Office of Biological and Environmental Research. The Advanced Light Source is a national user facility operated by Lawrence Berkeley National Laboratory on behalf of the U.S. Department of Energy under contract number DEAC02-05CH11231, Office of Basic Energy Sciences. The funds for the 900-MHz NMR spectrometer housed in the QB3 Institute in Stanley Hall at University of California, Berkeley were provided by the National Institutes of Health (GM68933). We thank E. C. Wittenborn, J. Holton, C. Gee and G. Meigs for crystallography advice. We also thank J.M. Bollinger and A.K. Boal for helpful discussions.

Author information




M.E.N. carried out protein crystallography, bioinformatics and enzyme characterization experiments. K.H.S. carried out enzyme characterization experiments. J.G.P. performed NMR experiments. J.L.M. contributed to bioinformatics. J.A.M. contributed helpful discussions and contributed to bioinformatics. M.E.N., M.C.Y.C. and K.H.S. planned experiments. M.E.N. and M.C.Y.C. wrote the manuscript.

Corresponding author

Correspondence to Michelle C. Y. Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, Supplementary Figures 1–23 and Supplementary Note 2

Reporting Summary

Supplementary Data


Supplementary Note 1

Synthetic Procedures

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neugebauer, M.E., Sumida, K.H., Pelton, J.G. et al. A family of radical halogenases for the engineering of amino-acid-based products. Nat Chem Biol 15, 1009–1016 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing