Perspective | Published:

Designing macrocyclic disulfide-rich peptides for biotechnological applications



Bioactive peptides have potential as drug leads, but turning them into drugs is a challenge because of their typically poor metabolic stability. Molecular grafting is one approach to stabilizing and constraining peptides and involves melding a bioactive peptide sequence onto a suitable molecular scaffold. This method has the benefit of improving the stability of the bioactive peptide lead and potentially expanding its functionality. Here we step through the molecular grafting process and describe its successes and limitations. So far, molecular grafting has been successfully used to improve the stability of peptide drug leads, to enhance conformational rigidity, to facilitate delivery to intracellular targets, and in some cases to increase efficacy in oral administration. Although applications of molecular grafting have focused mainly on therapeutic applications, including those for pain, metabolic disease, and cancer, its potential uses are much broader, and we hope this Perspective will inspire wider applications of this molecular design tool in biotechnology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Craik, D. J., Fairlie, D. P., Liras, S. & Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des. 81, 136–147 (2013).

  2. 2.

    Tsomaia, N. Peptide therapeutics: targeting the undruggable space. Eur. J. Med. Chem. 94, 459–470 (2015).

  3. 3.

    Rutledge, S. E., Volkman, H. M. & Schepartz, A. Molecular recognition of protein surfaces: high affinity ligands for the CBP KIX domain. J. Am. Chem. Soc. 125, 14336–14347 (2003).

  4. 4.

    Sia, S. K. & Kim, P. S. Protein grafting of an HIV-1-inhibiting epitope. Proc. Natl Acad. Sci. USA 100, 9756–9761 (2003).

  5. 5.

    Ewert, S., Honegger, A. & Plückthun, A. Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering. Methods 34, 184–199 (2004).

  6. 6.

    Brown, C. J. et al. Rational design and biophysical characterization of thioredoxin-based aptamers: insights into peptide grafting. J. Mol. Biol. 395, 871–883 (2010).

  7. 7.

    Azoitei, M. L. et al. Computational design of high-affinity epitope scaffolds by backbone grafting of a linear epitope. J. Mol. Biol. 415, 175–192 (2012).

  8. 8.

    Julian, M. C. et al. Co-evolution of affinity and stability of grafted amyloid-motif domain antibodies. Protein Eng. Des. Sel. 28, 339–350 (2015).

  9. 9.

    Plückthun, A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu. Rev. Pharmacol. Toxicol. 55, 489–511 (2015).

  10. 10.

    Walker, S. N., Tennyson, R. L., Chapman, A. M., Kennan, A. J. & McNaughton, B. R. GLUE that sticks to HIV: a helix-grafted GLUE protein that selectively binds the HIV gp41 N-terminal helical region. ChemBioChem 16, 219–222 (2015).

  11. 11.

    Mylne, J. S. et al. Albumins and their processing machinery are hijacked for cyclic peptides in sunflower. Nat. Chem. Biol. 7, 257–259 (2011).

  12. 12.

    Lehrer, R. I., Cole, A. M. & Selsted, M. E. θ-Defensins: cyclic peptides with endless potential. J. Biol. Chem. 287, 27014–27019 (2012).

  13. 13.

    Craik, D.J. Advances in Botanical Research: Plant Cyclotides Vol. 76 (Academic Press, London, 2015).

  14. 14.

    Craik, D. J. Chemistry. Seamless proteins tie up their loose ends. Science 311, 1563–1564 (2006).

  15. 15.

    Clark, R. J. et al. The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angew. Chem. Int. Edn. Engl. 49, 6545–6548 (2010). This study demonstrates orally delivered bioactivity (analgesia) of a cyclic disulfide-rich peptide.

  16. 16.

    Akcan, M. et al. Chemical re-engineering of chlorotoxin improves bioconjugation properties for tumor imaging and targeted therapy. J. Med. Chem. 54, 782–787 (2011).

  17. 17.

    Colgrave, M. L. & Craik, D. J. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry 43, 5965–5975 (2004).

  18. 18.

    Boy, R. G. et al. Sunflower trypsin inhibitor 1 derivatives as molecular scaffolds for the development of novel peptidic radiopharmaceuticals. Mol. Imaging Biol. 12, 377–385 (2010).

  19. 19.

    Conibear, A. C. et al. The cyclic cystine ladder of theta-defensins as a stable, bifunctional scaffold: a proof-of-concept study using the integrin-binding RGD motif. ChemBioChem 15, 451–459 (2014).

  20. 20.

    Colgrave, M. L., Korsinczky, M. J., Clark, R. J., Foley, F. & Craik, D. J. Sunflower trypsin inhibitor-1, proteolytic studies on a trypsin inhibitor peptide and its analogs. Biopolymers 94, 665–672 (2010).

  21. 21.

    Conibear, A. C., Rosengren, K. J., Daly, N. L., Henriques, S. T. & Craik, D. J. The cyclic cystine ladder in θ-defensins is important for structure and stability, but not antibacterial activity. J. Biol. Chem. 288, 10830–10840 (2013).

  22. 22.

    Ojeda, P. G., Chan, L. Y., Poth, A. G., Wang, C. K. & Craik, D. J. The role of disulfide bonds in structure and activity of chlorotoxin. Future Med. Chem. 6, 1617–1628 (2014).

  23. 23.

    Greenwood, K. P., Daly, N. L., Brown, D. L., Stow, J. L. & Craik, D. J. The cyclic cystine knot miniprotein MCoTI-II is internalized into cells by macropinocytosis. Int. J. Biochem. Cell Biol. 39, 2252–2264 (2007).

  24. 24.

    Contreras, J., Elnagar, A. Y., Hamm-Alvarez, S. F. & Camarero, J. A. Cellular uptake of cyclotide MCoTI-I follows multiple endocytic pathways. J. Control. Release 155, 134–143 (2011).

  25. 25.

    Cascales, L. et al. Identification and characterization of a new family of cell-penetrating peptides: cyclic cell-penetrating peptides. J. Biol. Chem. 286, 36932–36943 (2011).

  26. 26.

    Henriques, S. T. et al. The prototypic cyclotide kalata B1 has a unique mechanism of entering cells. Chem. Biol. 22, 1087–1097 (2015).

  27. 27.

    D’Souza, C., Henriques, S. T., Wang, C. K. & Craik, D. J. Structural parameters modulating the cellular uptake of disulfide-rich cyclic cell-penetrating peptides: MCoTI-II and SFTI-1. Eur. J. Med. Chem. 88, 10–18 (2014).

  28. 28.

    Wang, C. K. et al. Molecular grafting onto a stable framework yields novel cyclic peptides for the treatment of multiple sclerosis. ACS Chem. Biol. 9, 156–163 (2014).

  29. 29.

    Huang, Y. H. et al. Design of substrate-based BCR-ABL kinase inhibitors using the cyclotide scaffold. Sci. Rep. 5, 12974 (2015).

  30. 30.

    Chan, L. Y. et al. Engineering pro-angiogenic peptides using stable, disulfide-rich cyclic scaffolds. Blood 118, 6709–6717 (2011).

  31. 31.

    Aboye, T. et al. Design of a MCoTI-based cyclotide with angiotensin (1-7)-like activity. Molecules 21, 152 (2016).

  32. 32.

    Qiu, Y. et al. An orally active bradykinin B1 receptor antagonist engineered as a bifunctional chimera of sunflower trypsin inhibitor. J. Med. Chem. 60, 504–510 (2017).

  33. 33.

    Sable, R. et al. Constrained cyclic peptides as immunomodulatory inhibitors of the CD2:CD58 protein-protein interaction. ACS Chem. Biol. 11, 2366–2374 (2016).

  34. 34.

    Eliasen, R. et al. Design, synthesis, structural and functional characterization of novel melanocortin agonists based on the cyclotide kalata B1. J. Biol. Chem. 287, 40493–40501 (2012).

  35. 35.

    Claveria-Gimeno, R., Vega, S., Abian, O. & Velazquez-Campoy, A. A look at ligand binding thermodynamics in drug discovery. Expert Opin. Drug Discov. 12, 363–377 (2017).

  36. 36.

    Martin, S. F. & Clements, J. H. Correlating structure and energetics in protein-ligand interactions: paradigms and paradoxes. Annu. Rev. Biochem. 82, 267–293 (2013).

  37. 37.

    Ji, Y. et al. In vivo activation of the p53 tumor suppressor pathway by an engineered cyclotide. J. Am. Chem. Soc. 135, 11623–11633 (2013). This study describes a grafted cyclic-peptide scaffold that penetrates cells and modulates an intracellular target.

  38. 38.

    D’Souza, C. et al. Using the MCoTI-II cyclotide scaffold to design a stable cyclic peptide antagonist of SET, a protein overexpressed in human cancer. Biochemistry 55, 396–405 (2016).

  39. 39.

    Huang, Y. H., Chaousis, S., Cheneval, O., Craik, D. J. & Henriques, S. T. Optimization of the cyclotide framework to improve cell penetration properties. Front. Pharmacol. 6, 17 (2015).

  40. 40.

    Wong, C. T. et al. Orally active peptidic bradykinin B1 receptor antagonists engineered from a cyclotide scaffold for inflammatory pain treatment. Angew. Chem. Int. Edn. Engl. 51, 5620–5624 (2012). This study demonstrates a grafted peptide that has orally delivered bioactivity against inflammatory pain.

  41. 41.

    Thell, K. et al. Oral activity of a nature-derived cyclic peptide for the treatment of multiple sclerosis. Proc. Natl Acad. Sci. USA 113, 3960–3965 (2016).

  42. 42.

    White, T. R. et al. On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat. Chem. Biol. 7, 810–817 (2011).

  43. 43.

    Nielsen, D. S. et al. Improving on nature: making a cyclic heptapeptide orally bioavailable. Angew. Chem. Int. Edn. Engl. 53, 12059–12063 (2014).

  44. 44.

    Wang, C. K. et al. Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients. Proc. Natl Acad. Sci. USA 111, 17504–17509 (2014).

  45. 45.

    Frost, J. R., Scully, C. C. & Yudin, A. K. Oxadiazole grafts in peptide macrocycles. Nat. Chem. 8, 1105–1111 (2016).

  46. 46.

    Biron, E. et al. Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues. Angew. Chem. Int. Edn. Engl. 47, 2595–2599 (2008).

  47. 47.

    Harris, L. A. Constipation: linaclotide–a stimulating new drug for chronic constipation. Nat. Rev. Gastroenterol. Hepatol. 7, 365–366 (2010).

  48. 48.

    Zhang, J., Yamaguchi, S. & Nagamune, T. Sortase A-mediated synthesis of ligand-grafted cyclized peptides for modulating a model protein-protein interaction. Biotechnol. J. 10, 1499–1505 (2015).

  49. 49.

    de Veer, S. J., Wang, C. K., Harris, J. M., Craik, D. J. & Swedberg, J. E. Improving the selectivity of engineered protease inhibitors: optimizing the P2 primer residue using a versatile cyclic peptide library. J. Med. Chem. 58, 8257–8268 (2015).

  50. 50.

    Quimbar, P. et al. High-affinity cyclic peptide matriptase inhibitors. J. Biol. Chem. 288, 13885–13896 (2013).

  51. 51.

    Swedberg, J. E. et al. Cyclic alpha-conotoxin peptidomimetic chimeras as potent GLP-1R agonists. Eur. J. Med. Chem. 103, 175–184 (2015).

  52. 52.

    Gavenonis, J., Sheneman, B. A., Siegert, T. R., Eshelman, M. R. & Kritzer, J. A. Comprehensive analysis of loops at protein-protein interfaces for macrocycle design. Nat. Chem. Biol. 10, 716–722 (2014).

  53. 53.

    Bhardwaj, G. et al. Accurate de novo design of hyperstable constrained peptides. Nature 538, 329–335 (2016).

  54. 54.

    Wang, C. K., Northfield, S. E., Huang, Y. H., Ramos, M. C. & Craik, D. J. Inhibition of tau aggregation using a naturally-occurring cyclic peptide scaffold. Eur. J. Med. Chem. 109, 342–349 (2016).

  55. 55.

    Chan, L. Y., Craik, D. J. & Daly, N. L. Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy. Sci. Rep. 6, 35347 (2016). This study shows an example of grafting two epitopes that target different pathways onto a single scaffold.

  56. 56.

    Gunasekera, S. et al. Engineering stabilized vascular endothelial growth factor-A antagonists: synthesis, structural characterization, and bioactivity of grafted analogues of cyclotides. J. Med. Chem. 51, 7697–7704 (2008).

  57. 57.

    Aboye, T. L. et al. Design of a novel cyclotide-based CXCR4 antagonist with anti-human immunodeficiency virus (HIV)-1 activity. J. Med. Chem. 55, 10729–10734 (2012).

  58. 58.

    Sommerhoff, C. P. et al. Engineered cystine knot miniproteins as potent inhibitors of human mast cell tryptase β. J. Mol. Biol. 395, 167–175 (2010).

  59. 59.

    Zoller, F. et al. Combination of phage display and molecular grafting generates highly specific tumor-targeting miniproteins. Angew. Chem. Int. Edn. Engl. 51, 13136–13139 (2012).

  60. 60.

    Glotzbach, B. et al. Combinatorial optimization of cystine-knot peptides towards high-affinity inhibitors of human matriptase-1. PLoS One 8, e76956 (2013).

  61. 61.

    Getz, J. A., Rice, J. J. & Daugherty, P. S. Protease-resistant peptide ligands from a knottin scaffold library. ACS Chem. Biol. 6, 837–844 (2011).

  62. 62.

    Getz, J. A., Cheneval, O., Craik, D. J. & Daugherty, P. S. Design of a cyclotide antagonist of neuropilin-1 and -2 that potently inhibits endothelial cell migration. ACS Chem. Biol. 8, 1147–1154 (2013).

  63. 63.

    Kimura, R. H. et al. Pharmacokinetically stabilized cystine knot peptides that bind alpha-v-beta-6 integrin with single-digit nanomolar affinities for detection of pancreatic cancer. Clin. Cancer Res. 18, 839–849 (2012).

  64. 64.

    Cobos Caceres, C. et al. An engineered cyclic peptide alleviates symptoms of inflammation in a murine model of inflammatory bowel disease. J. Biol. Chem. 292, 10288–10294 (2017).

  65. 65.

    Li, K., Condurso, H. L., Li, G., Ding, Y. & Bruner, S. D. Structural basis for precursor protein-directed ribosomal peptide macrocyclization. Nat. Chem. Biol. 12, 973–979 (2016).

  66. 66.

    Repka, L. M., Chekan, J. R., Nair, S. K. & van der Donk, W. A. Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chem. Rev. 117, 5457–5520 (2017).

  67. 67.

    Nguyen, G. K. et al. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat. Chem. Biol. 10, 732–738 (2014).

  68. 68.

    Harris, K. S. et al. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase. Nat. Commun. 6, 10199 (2015).

  69. 69.

    Maric, H. M. et al. Gephyrin-binding peptides visualize postsynaptic sites and modulate neurotransmission. Nat. Chem. Biol. 13, 153–160 (2017).

  70. 70.

    Kintzing, J. R. & Cochran, J. R. Engineered knottin peptides as diagnostics, therapeutics, and drug delivery vehicles. Curr. Opin. Chem. Biol. 34, 143–150 (2016).

  71. 71.

    Bonning, B. C. et al. Toxin delivery by the coat protein of an aphid-vectored plant virus provides plant resistance to aphids. Nat. Biotechnol. 32, 102–105 (2014).

  72. 72.

    Pappas, C. G. et al. Dynamic peptide libraries for the discovery of supramolecular nanomaterials. Nat. Nanotechnol. 11, 960–967 (2016).

  73. 73.

    Heinis, C., Rutherford, T., Freund, S. & Winter, G. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat. Chem. Biol. 5, 502–507 (2009).

  74. 74.

    Passioura, T., Katoh, T., Goto, Y. & Suga, H. Selection-based discovery of druglike macrocyclic peptides. Annu. Rev. Biochem. 83, 727–752 (2014).

  75. 75.

    Thongyoo, P., Roqué-Rosell, N., Leatherbarrow, R. J. & Tate, E. W. Chemical and biomimetic total syntheses of natural and engineered MCoTI cyclotides. Org. Biomol. Chem. 6, 1462–1470 (2008).

  76. 76.

    Swedberg, J. E. et al. Substrate-guided design of a potent and selective kallikrein-related peptidase inhibitor for kallikrein 4. Chem. Biol. 16, 633–643 (2009).

  77. 77.

    Fittler, H., Avrutina, O., Empting, M. & Kolmar, H. Potent inhibitors of human matriptase-1 based on the scaffold of sunflower trypsin inhibitor. J. Pept. Sci. 20, 415–420 (2014).

  78. 78.

    Chan, L. Y., Craik, D. J. & Daly, N. L. Cyclic thrombospondin-1 mimetics: grafting of a thrombospondin sequence into circular disulfide-rich frameworks to inhibit endothelial cell migration. Biosci. Rep. 35, e00270 (2015).

  79. 79.

    Jendrny, C. & Beck-Sickinger, A. G. Inhibition of kallikrein-related peptidases 7 and 5 by grafting serpin reactive-center loop sequences onto sunflower trypsin inhibitor-1 (SFTI-1). ChemBioChem 17, 719–726 (2016).

  80. 80.

    Conibear, A. C. et al. Approaches to the stabilization of bioactive epitopes by grafting and peptide cyclization. Biopolymers 106, 89–100 (2016).

  81. 81.

    Clark, R. J., Daly, N. L. & Craik, D. J. Structural plasticity of the cyclic-cystine-knot framework: implications for biological activity and drug design. Biochem. J. 394, 85–93 (2006).

  82. 82.

    Thongyoo, P., Bonomelli, C., Leatherbarrow, R. J. & Tate, E. W. Potent inhibitors of β-tryptase and human leukocyte elastase based on the MCoTI-II scaffold. J. Med. Chem. 52, 6197–6200 (2009).

  83. 83.

    Swedberg, J. E. et al. Substrate-guided design of selective FXIIa inhibitors based on the plant-derived Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II) scaffold. J. Med. Chem. 59, 7287–7292 (2016).

  84. 84.

    Swedberg, J. E., Li, C. Y., de Veer, S. J., Wang, C. K. & Craik, D. J. Design of potent and selective cathepsin G inhibitors based on the sunflower trypsin inhibitor-1 scaffold. J. Med. Chem. 60, 658–667 (2017).

  85. 85.

    Maaß, F. et al. Cystine-knot peptides targeting cancer-relevant human cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). J. Pept. Sci. 21, 651–660 (2015).

  86. 86.

    Jagadish, K. et al. Recombinant expression and phenotypic screening of a bioactive cyclotide against α-synuclein-induced cytotoxicity in baker’s yeast. Angew. Chem. Int. Edn. Engl. 54, 8390–8394 (2015).

Download references


D.J.C. is an Australian Research Council Australian Laureate (FL150100146). Work in our laboratory on peptide scaffolds is supported by grants from the Australian Research Council (DP150100443) and the National Health and Medical Research Council (APP1107403 and APP1060225).

Author information

Competing interests

The authors declare no competing interests.

Correspondence to David J. Craik.

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Publication history

  • Received

  • Accepted

  • Published

  • Issue Date


Fig. 1: Selected cyclic disulfide-rich peptide scaffolds and their sequence diversity.
Fig. 2: Molecular grafting of epitopes onto scaffolds.
Fig. 3: Applications of molecular grafting.
Fig. 4: The molecular grafting process in rational drug design.
Fig. 5: Design of multivalent peptides by molecular grafting.
Fig. 6: A combinatorial library approach to molecular grafting.