Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-symmetric stapling of native peptides

Abstract

Stapling has emerged as a powerful technique in peptide chemistry. It enables precise control over peptide conformation leading to enhanced properties such as improved stability and enhanced binding affinity. Although symmetric stapling methods have been extensively explored, the field of non-symmetric stapling of native peptides has received less attention, largely as a result of the formidable challenges it poses — in particular the complexities involved in achieving the high chemo-selectivity and site-selectivity required to simultaneously modify distinct proteinogenic residues. Over the past 5 years, there have been significant breakthroughs in addressing these challenges. In this Review, we describe the latest strategies for non-symmetric stapling of native peptides, elucidating the protocols, reaction mechanisms and underlying design principles. We also discuss current challenges and opportunities this field offers for future applications, such as ligand discovery and peptide-based therapeutics.

Key points

  • Peptide conformation has a crucial role for its functions.

  • Non-symmetric stapling of native peptides constrains peptide conformation by covalently crosslinking two different natural residue side chains within peptides.

  • Non-symmetric stapling can be achieved with high chemo-selectivity and site-selectivity through directing strategy or cooperative strategy.

  • Non-symmetric stapling of native peptides holds great potential for peptide-based therapeutics.

  • The field of non-symmetric stapling of native peptides is still in its early stages with many opportunities for improvement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of non-symmetric stapling of native peptide.
Fig. 2: Strategies for non-symmetric Cys–Lys stapling.
Fig. 3: Stepwise strategies for non-symmetric Cys–Lys stapling.
Fig. 4: Strategies for non-symmetric Cys–Met and Cys–Trp stapling.
Fig. 5: Strategies for non-symmetric Lys–Tyr and Lys–Arg stapling.
Fig. 6: Strategies for non-symmetric Lys–Glu and Lys–Asp stapling.
Fig. 7: Nonspecific non-symmetric stapling through a ‘two birds with one stone’ strategy.

Similar content being viewed by others

References

  1. Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, F., Li, W., Farzan, M. & Harrison, S. C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309, 1864–1868 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Walensky, L. D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004). One of the earliest examples to use the concept of peptide stapling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blackwell, H. E. & Grubbs, R. H. Highly efficient synthesis of covalently cross-linked peptide helices by ring-closing metathesis. Angew. Chem. Int. Ed. Engl. 37, 3281–3284 (1998). One of the earliest examples of peptide stapling using olefin metathesis.

    Article  CAS  PubMed  Google Scholar 

  7. Lau, Y. H., de Andrade, P., Wu, Y. & Spring, D. R. Peptide stapling techniques based on different macrocyclisation chemistries. Chem. Soc. Rev. 44, 91–102 (2015). A comprehensive review on peptide stapling techniques.

    Article  CAS  PubMed  Google Scholar 

  8. Liu, J. et al. Recent advances in late-stage construction of stapled peptides via C–H activation. ChemBioChem 22, 2762–2771 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Bluntzer, M. T. J., O’Connell, J., Baker, T. S., Michel, J. & Hulme, A. N. Designing stapled peptides to inhibit protein-protein interactions: an analysis of successes in a rapidly changing field. Pept. Sci. 113, e24191 (2021).

    Article  CAS  Google Scholar 

  10. Ali, A. M., Atmaj, J., Van Oosterwijk, N., Groves, M. R. & Dömling, A. Stapled peptides inhibitors: a new window for target drug discovery. Comput. Struct. Biotechnol. J. 17, 263–281 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, X., Zou, Y. & Hu, H.-G. Different stapling-based peptide drug design: mimicking α-helix as inhibitors of protein–protein interaction. Chin. Chem. Lett. 29, 1088–1092 (2018).

    Article  Google Scholar 

  12. Wang, L. et al. Therapeutic peptides: current applications and future directions. Signal Transduct. Target. Ther. 7, 48 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vinogradov, A. A., Yin, Y. & Suga, H. Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J. Am. Chem. Soc. 141, 4167–4181 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Rhodes, C. A. & Pei, D. Bicyclic peptides as next-generation therapeutics. Chem. Eur. J. 23, 12690–12703 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Zorzi, A., Deyle, K. & Heinis, C. Cyclic peptide therapeutics: past, present and future. Curr. Opin. Chem. Biol. 38, 24–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Robertson, N. S. & Spring, D. R. Using peptidomimetics and constrained peptides as valuable tools for inhibiting protein–protein interactions. Molecules 23, 959 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moiola, M., Memeo, M. G. & Quadrelli, P. Stapled peptides — a useful improvement for peptide-based drugs. Molecules 24, 3654 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cooper, B. M., Iegre, J. O′., Donovan, D. H., Ölwegård Halvarsson, M. & Spring, D. R. Peptides as a platform for targeted therapeutics for cancer: peptide–drug conjugates (PDCs). Chem. Soc. Rev. 50, 1480–1494 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Valeur, E. et al. New modalities for challenging targets in drug discovery. Angew. Chem. Int. Ed. Engl. 56, 10294–10323 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Jing, X. & Jin, K. A gold mine for drug discovery: strategies to develop cyclic peptides into therapies. Med. Res. Rev. 40, 753–810 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Walensky, L. D. & Bird, G. H. Hydrocarbon-stapled peptides: principles, practice, and progress. J. Med. Chem. 57, 6275–6288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lau, Y. H. et al. Functionalised staple linkages for modulating the cellular activity of stapled peptides. Chem. Sci. 5, 1804–1809 (2014).

    Article  CAS  Google Scholar 

  23. Bechtler, C. & Lamers, C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med. Chem. 12, 1325–1351 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chow, H. Y., Zhang, Y., Matheson, E. & Li, X. Ligation technologies for the synthesis of cyclic peptides. Chem. Rev. 119, 9971–10001 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Madden, M. M. et al. Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-Mdm2/Mdmx interactions via photoinduced cycloaddition. Bioorg. Med. Chem. Lett. 21, 1472–1475 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brunel, F. M. & Dawson, P. E. Synthesis of constrained helical peptides by thioether ligation: application to analogs of gp41. Chem. Commun. https://doi.org/10.1039/B419015G (2005).

  27. Mendive-Tapia, L. et al. New peptide architectures through C-H activation stapling between tryptophan-phenylalanine/tyrosine residues. Nat. Commun. 6, 7160 (2015).

    Article  PubMed  Google Scholar 

  28. Spokoyny, A. M. et al. A perfluoroaryl-cysteine SNAr chemistry approach to unprotected peptide stapling. J. Am. Chem. Soc. 135, 5946–5949 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fairlie, D. P. & Dantas de Araujo, A. Stapling peptides using cysteine crosslinking. Pept. Sci. 106, 843–852 (2016).

    Article  CAS  Google Scholar 

  30. Chen, F.-J., Zheng, M., Nobile, V. & Gao, J. Fast and cysteine-specific modification of peptides, proteins and bacteriophage using chlorooximes. Chem. Eur. J. 28, e202200058 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Yu, Q., Bai, L. & Jiang, X. Disulfide click reaction for stapling of S-terminal peptides. Angew. Chem. Int. Ed. Engl. 62, e202314379 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Luo, Q., Tao, Y., Sheng, W., Lu, J. & Wang, H. Dinitroimidazoles as bifunctional bioconjugation reagents for protein functionalization and peptide macrocyclization. Nat. Commun. 10, 142 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Iskandar, S. E., Haberman, V. A. & Bowers, A. A. Expanding the chemical diversity of genetically encoded libraries. ACS Comb. Sci. 22, 712–733 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hoyt, E. A., Cal, P. M. S. D., Oliveira, B. L. & Bernardes, G. J. L. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147–171 (2019).

    Article  CAS  Google Scholar 

  35. Gunnoo, S. B. & Madder, A. Chemical protein modification through cysteine. ChemBioChem 17, 529–553 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Boutureira, O. & Bernardes, G. J. L. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Ochtrop, P. & Hackenberger, C. P. R. Recent advances of thiol-selective bioconjugation reactions. Curr. Opin. Chem. Biol. 58, 28–36 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nat. Commun. 5, 4740 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Baslé, E., Joubert, N. & Pucheault, M. Protein chemical modification on endogenous amino acids. Chem. Biol. 17, 213–227 (2010).

    Article  PubMed  Google Scholar 

  40. Chalker, J. M., Bernardes, G. J. L., Lin, Y. A. & Davis, B. G. Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem. Asian J. 4, 630–640 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Kubota, K., Dai, P., Pentelute, B. L. & Buchwald, S. L. Palladium oxidative addition complexes for peptide and protein cross-linking. J. Am. Chem. Soc. 140, 3128–3133 (2018). Describes non-symmetric Cys–Lys stapling using organometallic complex in peptides and proteins with high site-selectivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vinogradova, E. V., Zhang, C., Spokoyny, A. M., Pentelute, B. L. & Buchwald, S. L. Organometallic palladium reagents for cysteine bioconjugation. Nature 526, 687–691 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xuan, W., Shao, S. & Schultz, P. G. Protein crosslinking by genetically encoded noncanonical amino acids with reactive aryl carbamate side chains. Angew. Chem. Int. Ed. Engl. 56, 5096–5100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ravasco, J. M. J. M., Faustino, H., Trindade, A. & Gois, P. M. P. Bioconjugation with maleimides: a useful tool for chemical biology. Chem. Eur. J. 25, 43–59 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, I., Dorr, B. M. & Liu, D. R. A general strategy for the evolution of bond-forming enzymes using yeast display. Proc. Natl Acad. Sci. USA 108, 11399–11404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Phan, J. et al. Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX. J. Biol. Chem. 285, 2174–2183 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Ceballos, J., Grinhagena, E., Sangouard, G., Heinis, C. & Waser, J. Cys–Cys and Cys–Lys stapling of unprotected peptides enabled by hypervalent iodine reagents. Angew. Chem. Int. Ed. Engl. 60, 9022–9031 (2021). Describes non-symmetric Cys–Lys stapling using hypervalent iodine reagents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Atherton, E., Cameron, L. R. & Sheppard, R. C. Peptide synthesis: part 10. Use of pentafluorophenyl esters of fluorenylmethoxycarbonylamino acids in solid phase peptide synthesis. Tetrahedron 44, 843–857 (1988).

    Article  CAS  Google Scholar 

  49. Frei, R. et al. Fast and highly chemoselective alkynylation of thiols with hypervalent iodine reagents enabled through a low energy barrier concerted mechanism. J. Am. Chem. Soc. 136, 16563–16573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Frei, R. & Waser, J. A highly chemoselective and practical alkynylation of thiols. J. Am. Chem. Soc. 135, 9620–9623 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Bernal, F., Tyler, A. F., Korsmeyer, S. J., Walensky, L. D. & Verdine, G. L. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J. Am. Chem. Soc. 129, 2456–2457 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iwakuma, T. & Lozano, G. MDM2, an introduction. Mol. Cancer Res. 1, 993–1000 (2003).

    CAS  PubMed  Google Scholar 

  53. Silva, M. et al. Efficient amino-sulfhydryl stapling on peptides and proteins using bifunctional NHS-activated acrylamides. Angew. Chem. Int. Ed. Engl. 60, 10850–10857 (2021). Describes non-symmetric Cys–Lys stapling using acrylamide reagents with rapid kinetics and high site-selectivity.

    Article  CAS  PubMed  Google Scholar 

  54. Bernardim, B. et al. Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents. Nat. Commun. 7, 13128 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, F. J. & Gao, J. Fast cysteine bioconjugation chemistry. Chem. Eur. J. 28, e202201843 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, F. J., Pinnette, N., Yang, F. & Gao, J. A cysteine-directed proximity-driven crosslinking method for native peptide bicyclization. Angew. Chem. Int. Ed. Engl. 62, e202306813 (2023). Describes biocompatible non-symmetric Cys–Cys–Lys stapling in native peptides, protein and bacteriophage.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schäfer, R. J. B. et al. The bioorthogonal isonitrile–chlorooxime ligation. J. Am. Chem. Soc. 141, 18644–18648 (2019).

    Article  PubMed  Google Scholar 

  58. Kesornpun, C., Aree, T., Mahidol, C., Ruchirawat, S. & Kittakoop, P. Water-assisted nitrile oxide cycloadditions: synthesis of isoxazoles and stereoselective syntheses of isoxazolines and 1,2,4-oxadiazoles. Angew. Chem. Int. Ed. Engl. 55, 3997–4001 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Devlin, J. J., Panganiban, L. C. & Devlin, P. E. Random peptide libraries: a source of specific protein binding molecules. Science 249, 404–406 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Jaroszewicz, W., Morcinek-Orłowska, J., Pierzynowska, K., Gaffke, L. & Węgrzyn, G. Phage display and other peptide display technologies. FEMS Microbiol. Rev. 46, fuab052 (2021).

    Article  Google Scholar 

  61. Rentero Rebollo, I. & Heinis, C. Phage selection of bicyclic peptides. Methods 60, 46–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Heinis, C. & Winter, G. Encoded libraries of chemically modified peptides. Curr. Opin. Chem. Biol. 26, 89–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Zeng, W. et al. Research progress on chemical modifications of tyrosine residues in peptides and proteins. Biotechnol. Bioeng. 121, 799–822 (2024).

    Article  CAS  PubMed  Google Scholar 

  64. Spears, R. J. & Fascione, M. A. Site-selective incorporation and ligation of protein aldehydes. Org. Biomol. Chem. 14, 7622–7638 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Asiimwe, N., Al Mazid, M. F., Murale, D. P., Kim, Y. K. & Lee, J.-S. Recent advances in protein modifications techniques for the targeting N-terminal cysteine. Pept. Sci. 114, e24235 (2022).

    Article  CAS  Google Scholar 

  66. García Alvarez-Coque, M. C., Medina Hernández, M. J., Villanueva Camañas, R. M. & Mongay Fernández, C. Formation and instability of O-phthalaldehyde derivatives of amino acids. Anal. Biochem. 178, 1–7 (1989).

    Article  PubMed  Google Scholar 

  67. Maly, D. J., Allen, J. A. & Shokat, K. M. A mechanism-based cross-linker for the identification of kinase–substrate pairs. J. Am. Chem. Soc. 126, 9160–9161 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, Y., Zhang, Q., Wong, C. T. T. & Li, X. Chemoselective peptide cyclization and bicyclization directly on unprotected peptides. J. Am. Chem. Soc. 141, 12274–12279 (2019). Describes biocompatible non-symmetric Cys–Lys stapling using aldehyde derivatives in native peptides, and construction of biomolecule conjugates.

    Article  CAS  PubMed  Google Scholar 

  69. Todorovic, M. et al. Fluorescent isoindole crosslink (FlICk) chemistry: a rapid, user-friendly stapling reaction. Angew. Chem. Int. Ed. Engl. 58, 14120–14124 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, Y., Czabala, P. & Raj, M. Bioinspired one-pot furan-thiol-amine multicomponent reaction for making heterocycles and its applications. Nat. Commun. 14, 4086 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Peterson, L. A., Cummings, M. E., Vu, C. C. & Matter, B. A. Glutathione trapping to measure microsomal oxidation of furan to cis-2-butene-1,4-dial. Drug Metab. Dispos. 33, 1453–1458 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Cheng, L., Wang, Y., Guo, Y., Zhang, S. S. & Xiao, H. Advancing protein therapeutics through proximity-induced chemistry. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2023.09.004 (2023).

  73. Hymel, D. & Liu, F. Proximity-driven, regioselective chemical modification of peptides and proteins. Asian J. Org. Chem. 10, 38–49 (2021).

    Article  CAS  Google Scholar 

  74. Li, X. et al. Dithiocarbamate-inspired side chain stapling chemistry for peptide drug design. Chem. Sci. 10, 1522–1530 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2019).

    Article  Google Scholar 

  76. Kim, J. et al. Site-selective functionalization of methionine residues via photoredox catalysis. J. Am. Chem. Soc. 142, 21260–21266 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kramer, J. R. & Deming, T. J. Reversible chemoselective tagging and functionalization of methionine containing peptides. Chem. Commun. 49, 5144–5146 (2013).

    Article  CAS  Google Scholar 

  78. Taylor, M. T., Nelson, J. E., Suero, M. G. & Gaunt, M. J. A protein functionalization platform based on selective reactions at methionine residues. Nature 562, 563–568 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, D. et al. A sulfonium tethered peptide ligand rapidly and selectively modifies protein cysteine in vicinity. Chem. Sci. 10, 4966–4972 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yao, G. et al. Iodine-mediated tryptathionine formation facilitates the synthesis of amanitins. J. Am. Chem. Soc. 143, 14322–14331 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Sieber, P., Kamber, B., Riniker, B. & Rittel, W. Iodine oxidation of S-trityl- and S-acetamidomethyl-cysteine-peptides containing tryptophan: conditions leading to the formation of tryptophan-2-thioethers. Helv. Chim. Acta 63, 2358–2363 (1980).

    Article  CAS  Google Scholar 

  82. May, J. P. & Perrin, D. M. Tryptathionine bridges in peptide synthesis. Pept. Sci. 88, 714–724 (2007).

    Article  CAS  Google Scholar 

  83. Lindell, T. J., Weinberg, F., Morris, P. W., Roeder, R. G. & Rutter, W. J. Specific inhibition of nuclear RNA polymerase II by α-amanitin. Science 170, 447–449 (1970).

    Article  CAS  PubMed  Google Scholar 

  84. Schuresko, L. A. & Lokey, R. S. A practical solid-phase synthesis of glu7-phalloidin and entry into fluorescent F-actin-binding reagents. Angew. Chem. Int. Ed. Engl. 46, 3547–3549 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Kobayashi, D. et al. Peptide cyclization mediated by metal-free S-arylation: S-protected cysteine sulfoxide as an umpolung of the cysteine nucleophile. Chem. Eur. J. 27, 14092–14099 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Kobayashi, D. et al. Copper(II)-mediated C–H sulphenylation or selenylation of tryptophan enabling macrocyclization of peptides. Chem. Commun. 57, 10763–10766 (2021).

    Article  CAS  Google Scholar 

  87. Li, B. et al. Cooperative stapling of native peptides at lysine and tyrosine or arginine with formaldehyde. Angew. Chem. Int. Ed. Engl. 60, 6646–6652 (2021). Describes non-symmetric Lys–Tyr stapling and Lys–Arg stapling using cooperative strategy.

    Article  CAS  PubMed  Google Scholar 

  88. Ghareeb, H. & Metanis, N. Enhancing the gastrointestinal stability of salmon calcitonin through peptide stapling. Chem. Commun. 59, 6682–6685 (2023).

    Article  CAS  Google Scholar 

  89. Li, B. et al. Construction of complex macromulticyclic peptides via stitching with formaldehyde and guanidine. J. Am. Chem. Soc. 144, 10080–10090 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Colomer, I., Chamberlain, A. E. R., Haughey, M. B. & Donohoe, T. J. Hexafluoroisopropanol as a highly versatile solvent. Nat. Rev. Chem. 1, 0088 (2017).

    Article  CAS  Google Scholar 

  91. Felix, A. M. et al. Synthesis, biological activity and conformational analysis of cyclic GRF analogs. Int. J. Pept. Protein Res. 32, 441–454 (1988).

    Article  CAS  PubMed  Google Scholar 

  92. Taylor, J. W. The synthesis and study of side-chain lactam-bridged peptides. Pept. Sci. 66, 49–75 (2002).

    Article  CAS  Google Scholar 

  93. Shepherd, N. E., Hoang, H. N., Abbenante, G. & Fairlie, D. P. Single turn peptide alpha helices with exceptional stability in water. J. Am. Chem. Soc. 127, 2974–2983 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Harrison, R. S. et al. Novel helix-constrained nociceptin derivatives are potent agonists and antagonists of ERK phosphorylation and thermal analgesia in mice. J. Med. Chem. 53, 8400–8408 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Harrison, R. S. et al. Downsizing human, bacterial, and viral proteins to short water-stable alpha helices that maintain biological potency. Proc. Natl Acad. Sci. USA 107, 11686–11691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Khoo, K. K. et al. Lactam-stabilized helical analogues of the analgesic μ-conotoxin KIIIA. J. Med. Chem. 54, 7558–7566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. de Araujo, A. D. et al. Comparative α-helicity of cyclic pentapeptides in water. Angew. Chem. Int. Ed. Engl. 53, 6965–6969 (2014).

    Article  PubMed  Google Scholar 

  98. Abdelraheem, E. M. M., Shaabani, S. & Dömling, A. Macrocycles: MCR synthesis and applications in drug discovery. Drug Discov. Today Technol. 29, 11–17 (2018).

    Article  PubMed  Google Scholar 

  99. Dömling, A., Wang, W. & Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev. 112, 3083–3135 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Vasco, A. V. et al. Macrocyclization of peptide side chains by the Ugi reaction: achieving peptide folding and exocyclic N-functionalization in one shot. J. Org. Chem. 80, 6697–6707 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Fouad, M. A., Abdel-Hamid, H. & Ayoup, M. S. Two decades of recent advances of Ugi reactions: synthetic and pharmaceutical applications. RSC Adv. 10, 42644–42681 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Reguera, L. & Rivera, D. G. Multicomponent reaction toolbox for peptide macrocyclization and stapling. Chem. Rev. 119, 9836–9860 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. White, C. J. & Yudin, A. K. Contemporary strategies for peptide macrocyclization. Nat. Chem. 3, 509–524 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Vasco, A. V. et al. A multicomponent stapling approach to exocyclic functionalized helical peptides: adding lipids, sugars, pegs, labels, and handles to the lactam bridge. Bioconjug. Chem. 30, 253–259 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Rouhani, M. A deeper computational look at Mumm rearrangement: evaluation of substituent, solvent, and temperature effects. J. Phys. Org. Chem. 33, e4106 (2020).

    Article  CAS  Google Scholar 

  106. Trudel, V., Tien, C.-H., Trofimova, A. & Yudin, A. K. Interrupted reactions in chemical synthesis. Nat. Rev. Chem. 5, 604–623 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Hili, R., Rai, V. & Yudin, A. K. Macrocyclization of linear peptides enabled by amphoteric molecules. J. Am. Chem. Soc. 132, 2889–2891 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Frost, J. R., Scully, C. C. G. & Yudin, A. K. Oxadiazole grafts in peptide macrocycles. Nat. Chem. 8, 1105–1111 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Yang, P. et al. Teraryl braces in macrocycles: synthesis and conformational landscape remodeling of peptides. J. Am. Chem. Soc. 145, 13968–13978 (2023).

  110. Card, P. J. & Smart, B. E. Reactions of perfluorocycloalkenones with nucleophiles. J. Org. Chem. 45, 4429–4432 (1980).

    Article  CAS  Google Scholar 

  111. Garg, S., Twamley, B., Zeng, Z. & Shreeve, J. N. M. Azoles as reactive nucleophiles with cyclic perfluoroalkenes. Chem. Eur. J. 15, 10554–10562 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Cracowski, J.-M. et al. Perfluorocyclopentenyl (PFCP) aryl ether polymers via polycondensation of octafluorocyclopentene with bisphenols. Macromolecules 45, 766–771 (2012).

    Article  CAS  Google Scholar 

  113. Tsunemi, T., Bernardino, S. J., Mendoza, A., Jones, C. G. & Harran, P. G. Syntheses of atypically fluorinated peptidyl macrocycles through sequential vinylic substitutions. Angew. Chem. Int. Ed. Engl. 59, 674–678 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Mendoza, A. et al. Cascade synthesis of fluorinated spiroheterocyclic scaffolding for peptidic macrobicycles. J. Am. Chem. Soc. 145, 15888–15895 (2023).

    Article  CAS  PubMed  Google Scholar 

  115. Reddy, N. C. et al. Traceless cysteine-linchpin enables precision engineering of lysine in native proteins. Nat. Commun. 13, 6038 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bal, A., Singh, S. K., Kashyap, T. & Rai, V. in Methods Enzymol. Vol. 675 (ed. Shukla, A. K.) 383–396 (Academic, 2022).

  117. Adusumalli, S. R. et al. Chemoselective and site-selective lysine-directed lysine modification enables single-site labeling of native proteins. Angew. Chem. Int. Ed. Engl. 59, 10332–10336 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Yu, B., Cao, L., Li, S., Klauser, P. & Wang, L. Proximity-enabled sulfur fluoride exchange reaction in protein context. Chem. Sci. 14, 7913–7921 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, W., Lorion, M. M., Shah, J., Kapdi, A. R. & Ackermann, L. Late-stage peptide diversification by position-selective C–H activation. Angew. Chem. Int. Ed. Engl. 57, 14700–14717 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Sengupta, S. & Mehta, G. Late stage modification of peptides via CH activation reactions. Tetrahedron Lett. 58, 1357–1372 (2017).

    Article  CAS  Google Scholar 

  121. Peters, D. S., Romesberg, F. E. & Baran, P. S. Scalable access to arylomycins via C–H functionalization logic. J. Am. Chem. Soc. 140, 2072–2075 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dong, J., Krasnova, L., Finn, M. G. & Sharpless, K. B. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. Engl. 53, 9430–9448 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Abdul Fattah, T., Saeed, A. & Albericio, F. Recent advances towards sulfur (VI) fluoride exchange (SuFEx) click chemistry. J. Fluor. Chem. 213, 87–112 (2018).

    Article  CAS  Google Scholar 

  124. Barrow, A. S. et al. The growing applications of SuFEx click chemistry. Chem. Soc. Rev. 48, 4731–4758 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Mackay, A. S., Payne, R. J. & Malins, L. R. Electrochemistry for the chemoselective modification of peptides and proteins. J. Am. Chem. Soc. 144, 23–41 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Shen, L., Monasson, O., Peroni, E., Le Bideau, F. & Messaoudi, S. Electrochemical nickel-catalyzed selective inter- and intramolecular arylations of cysteine-containing peptides. Angew. Chem. Int. Ed. Engl. 62, e202315748 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Zhang, Y., Park, K.-Y., Suazo, K. F. & Distefano, M. D. Recent progress in enzymatic protein labelling techniques and their applications. Chem. Soc. Rev. 47, 9106–9136 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Li, B. et al. Extendable stapling of unprotected peptides by crosslinking two amines with O-phthalaldehyde. Nat. Commun. 13, 311 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zheng, M., Haeffner, F. & Gao, J. N-Terminal cysteine mediated backbone-side chain cyclization for chemically enhanced phage display. Chem. Sci. 13, 8349–8354 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  130. He, J., Ghosh, P. & Nitsche, C. Biocompatible strategies for peptide macrocyclisation. Chem. Sci. 15, 2300–2322 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Oppewal, T. R., Jansen, I. D., Hekelaar, J. & Mayer, C. A strategy to select macrocyclic peptides featuring asymmetric molecular scaffolds as cyclization units by phage display. J. Am. Chem. Soc. 144, 3644–3652 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dotter, H., Boll, M., Eder, M. & Eder, A.-C. Library and post-translational modifications of peptide-based display systems. Biotechnol. Adv. 47, 107699 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Huang, Y., Wiedmann, M. M. & Suga, H. RNA display methods for the discovery of bioactive macrocycles. Chem. Rev. 119, 10360–10391 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledges the grant support from Fuzhou University (no. 511264), the National Natural Science Foundation of China (no. 82074005) and Fujian University of Traditional Chinese Medicine (no. X2021008-rencai).

Author information

Authors and Affiliations

Authors

Contributions

F.-J.C. and W.L. contributed equally to the preparation of this manuscript. F.-J.C. and W.L. contributed to the discussion of content, researching data for the article, and writing and editing of the manuscript. F.-E.C. contributed to the discussion of content and reviewing and editing of the manuscript before submission.

Corresponding authors

Correspondence to Fa-Jie Chen or Fen-Er Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, FJ., Lin, W. & Chen, FE. Non-symmetric stapling of native peptides. Nat Rev Chem (2024). https://doi.org/10.1038/s41570-024-00591-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41570-024-00591-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing