Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comprehensive whole-genome sequence analyses provide insights into the genomic architecture of cerebral palsy

Abstract

We performed whole-genome sequencing (WGS) in 327 children with cerebral palsy (CP) and their biological parents. We classified 37 of 327 (11.3%) children as having pathogenic/likely pathogenic (P/LP) variants and 58 of 327 (17.7%) as having variants of uncertain significance. Multiple classes of P/LP variants included single-nucleotide variants (SNVs)/indels (6.7%), copy number variations (3.4%) and mitochondrial mutations (1.5%). The COL4A1 gene had the most P/LP SNVs. We also analyzed two pediatric control cohorts (n = 203 trios and n = 89 sib-pair families) to provide a baseline for de novo mutation rates and genetic burden analyses, the latter of which demonstrated associations between de novo deleterious variants and genes related to the nervous system. An enrichment analysis revealed previously undescribed plausible candidate CP genes (SMOC1, KDM5B, BCL11A and CYP51A1). A multifactorial CP risk profile and substantial presence of P/LP variants combine to support WGS in the diagnostic work-up across all CP and related phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The number (%) of cases with subtypes of variants of potential clinical relevance in CP.
Fig. 2: Gene-set analysis of de novo SNVs/indels and large TRs.

Similar content being viewed by others

Data availability

WGS data from CP families from the Canadian CP Registry and control data from the CHILD cohort are available at the European Genome–Phenome Archive (EGA; Canadian CP Registry: https://ega-archive.org/dacs/EGAC00001003068; CHILD: https://ega-archive.org/dacs/EGAC00001002953). WGS data from CP-NET are stored in the Brain-CODE Neuroinformatics Platform (https://doi.org/10.60955/fszr-5q79)97. Access to the EGA datasets is governed by a Data Access Committee with primary contact via author S.W.S. Access to the Brain-CODE dataset is governed by a Data Access Committee managed by the Ontario Brain Institute, with primary contacts via authors R.F.W. and D.L.F. Control data from subjects enrolled in the Inova cohort were not consented for deposition in public databases and are thus available on request from author G.M. Source data are provided with this paper.

Code availability

The present study did not use any customized code or software.

References

  1. McIntyre, S. et al. Global prevalence of cerebral palsy: a systematic analysis. Dev. Med. Child Neurol. 64, 1494–1506 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rosenbaum, P. et al. A report: the definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. Suppl. 109, 8–14 (2007).

    PubMed  Google Scholar 

  3. Christensen, D. et al. Prevalence of cerebral palsy, co-occurring autism spectrum disorders, and motor functioning—Autism and Developmental Disabilities Monitoring Network, USA, 2008. Dev. Med. Child Neurol. 56, 59–65 (2014).

    Article  PubMed  Google Scholar 

  4. Jin, S. C. et al. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat. Genet. 52, 1046–1056 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Amankwah, N. et al. Cerebral palsy in Canada, 2011–2031: results of a microsimulation modelling study of epidemiological and cost impacts. Health Promot. Chronic Dis. Prev. Can. 40, 25–37 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Friedman, J. M., van Essen, P. & van Karnebeek, C. D. M. Cerebral palsy and related neuromotor disorders: overview of genetic and genomic studies. Mol. Genet. Metab. https://doi.org/10.1016/j.ymgme.2021.11.001 (2021).

  7. Chopra, M. et al. Mendelian etiologies identified with whole exome sequencing in cerebral palsy. Ann. Clin. Transl. Neurol. 9, 193–205 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, N. et al. In-depth analysis reveals complex molecular aetiology in a cohort of idiopathic cerebral palsy. Brain 145, 119–141 (2022).

    Article  PubMed  Google Scholar 

  9. Mei, H. et al. Genetic spectrum identified by exome sequencing in a Chinese pediatric cerebral palsy cohort. J. Pediatr. 242, 206–212.e206 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Rosello, M. et al. Hidden etiology of cerebral palsy: genetic and clinical heterogeneity and efficient diagnosis by next-generation sequencing. Pediatr. Res. 90, 284–288 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Segel, R. et al. Copy number variations in cryptogenic cerebral palsy. Neurology 84, 1660–1668 (2015).

    Article  PubMed  Google Scholar 

  12. May, H. J. et al. Genetic testing in individuals with cerebral palsy. Dev. Med. Child Neurol. 63, 1448–1455 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moreno-De-Luca, A. et al. Molecular diagnostic yield of exome sequencing in patients with cerebral palsy. JAMA 325, 467–475 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zarrei, M. et al. De novo and rare inherited copy-number variations in the hemiplegic form of cerebral palsy. Genet. Med. 20, 172–180 (2018).

    Article  PubMed  Google Scholar 

  15. Takezawa, Y. et al. Genomic analysis identifies masqueraders of full-term cerebral palsy. Ann. Clin. Transl. Neurol. 5, 538–551 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kayumi, S. et al. Genomic and phenotypic characterization of 404 individuals with neurodevelopmental disorders caused by CTNNB1 variants. Genet. Med. 24, 2351–2366 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Srivastava, S. et al. Molecular diagnostic yield of exome sequencing and chromosomal microarray in cerebral palsy: a systematic review and meta-analysis. JAMA Neurol. 79, 1287–1295 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pearson, T. S., Pons, R., Ghaoui, R. & Sue, C. M. Genetic mimics of cerebral palsy. Mov. Disord. 34, 625–636 (2019).

    Article  PubMed  Google Scholar 

  19. MacLennan, A. H. et al. Genetic or other causation should not change the clinical diagnosis of cerebral palsy. J. Child Neurol. 34, 472–476 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hale, A. T. et al. Genome-wide association study identifies genetic risk factors for spastic cerebral palsy. Neurosurgery 89, 435–442 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Corbett, M. A. et al. Pathogenic copy number variants that affect gene expression contribute to genomic burden in cerebral palsy. NPJ Genom. Med. 3, 33 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McMichael, G. et al. Rare copy number variation in cerebral palsy. Eur. J. Hum. Genet. 22, 40–45 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Oskoui, M. Disentangling racial and ethnic disparities in cerebral palsy. Dev. Med. Child Neurol. 57, 791–792 (2015).

    Article  PubMed  Google Scholar 

  24. McMichael, G. et al. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol. Psychiatry 20, 176–182 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Kadotani, T., Watanabe, Y., Saito, T., Sawano, K. & Minatozaki, K. A chromosomal study on 100 cases of cerebral palsy. Int. J. Hum. Genet. 1, 109–112 (2001).

    Article  Google Scholar 

  26. Oskoui, M. et al. Clinically relevant copy number variations detected in cerebral palsy. Nat. Commun. 6, 7949 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. van Eyk, C. L. et al. Yield of clinically reportable genetic variants in unselected cerebral palsy by whole genome sequencing. NPJ Genom. Med. 6, 74 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pham, R. et al. Definition and diagnosis of cerebral palsy in genetic studies: a systematic review. Dev. Med. Child Neurol. 62, 1024–1030 (2020).

    Article  PubMed  Google Scholar 

  29. Costain, G. et al. Genome sequencing as a diagnostic test in children with unexplained medical complexity. JAMA Netw. Open 3, e2018109 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Trost, B. et al. Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature 586, 80–86 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trost, B. et al. Genomic architecture of autism from comprehensive whole-genome sequence annotation. Cell 148, 4409–4427.e4418 (2022).

    Article  Google Scholar 

  32. Haque, B. et al. Contemporary aetiologies of medical complexity in children: a cohort study. Arch. Dis. Child. 108, 147–149 (2023).

    Article  PubMed  Google Scholar 

  33. Darnell, J. C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng, F. et al. Comprehensive characterization of protein-protein interactions perturbed by disease mutations. Nat. Genet. 53, 342–353 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramazi, S. & Zahiri, J. Posttranslational modifications in proteins: resources, tools and prediction methods. Database https://doi.org/10.1093/database/baab012 (2021).

  36. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2021).

  37. Wan, J. et al. Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat. Genet. 44, 704–708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fu, Y. et al. RGS-insensitive G-protein mutations to study the role of endogenous RGS proteins. Methods Enzymol. 389, 229–243 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Yokoi, S. et al. TUBA1A mutation can cause a hydranencephaly-like severe form of cortical dysgenesis. Sci. Rep. 5, 15165 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Okumura, A. et al. A patient with a GNAO1 mutation with decreased spontaneous movements, hypotonia, and dystonic features. Brain Dev. 40, 926–930 (2018).

    Article  PubMed  Google Scholar 

  41. Gonzalez-Mantilla, P. J. et al. Diagnostic yield of exome sequencing in cerebral palsy and implications for genetic testing guidelines: a systematic review and meta-analysis. JAMA Pediatr. 177, 472–478 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lanfranconi, S. & Markus, H. S. COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke 41, e513–e518 (2010).

    Article  PubMed  Google Scholar 

  43. Meuwissen, M. E. et al. The expanding phenotype of COL4A1 and COL4A2 mutations: clinical data on 13 newly identified families and a review of the literature. Genet. Med. 17, 843–853 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Yoneda, Y. et al. Phenotypic spectrum of COL4A1 mutations: porencephaly to schizencephaly. Ann. Neurol. 73, 48–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Khalid, R. et al. COL4A1 and fetal vascular origins of schizencephaly. Neurology 90, 232–234 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Costain, G. et al. Periodic reanalysis of whole-genome sequencing data enhances the diagnostic advantage over standard clinical genetic testing. Eur. J. Hum. Genet. 26, 740–744 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morton, S. U. et al. Multicenter consensus approach to evaluation of neonatal hypotonia in the genomic era: a review. JAMA Neurol. 79, 405–413 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kingsmore, S. F. et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am. J. Hum. Genet. 109, 1605–1619 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Donn, S. M., Chiswick, M. L. & Fanaroff, J. M. Medico-legal implications of hypoxic-ischemic birth injury. Semin. Fetal Neonatal Med. 19, 317–321 (2014).

    Article  PubMed  Google Scholar 

  50. Chiurazzi, P. & Pirozzi, F. Advances in understanding—genetic basis of intellectual disability. F1000Res. https://doi.org/10.12688/f1000research.7134.1 (2016).

  51. Brown, S. A. et al. Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nat. Genet. 20, 180–183 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Depienne, C. & Mandel, J. L. 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? Am. J. Hum. Genet. 108, 764–785 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 49, 27–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Mojarad, B. A. et al. Genome-wide tandem repeat expansions contribute to schizophrenia risk. Mol. Psychiatry 27, 3692–3698 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wen, J. et al. Rare tandem repeat expansions associate with genes involved in synaptic and neuronal signaling functions in schizophrenia. Mol. Psychiatry 28, 475–482 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Tu, W. et al. DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140, 222–234 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, Y. et al. Clinical and genetic heterogeneity in a cohort of Chinese children with dopa-responsive dystonia. Front. Pediatr. 8, 83 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Diaz Heijtz, R., Almeida, R., Eliasson, A. C. & Forssberg, H. Genetic variation in the dopamine system influences intervention outcome in children with cerebral palsy. eBioMedicine 28, 162–167 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wijemanne, S. & Jankovic, J. Dopa-responsive dystonia–clinical and genetic heterogeneity. Nat. Rev. Neurol. 11, 414–424 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Fink, J. K. Hereditary spastic paraplegia: clinical principles and genetic advances. Semin. Neurol. 34, 293–305 (2014).

    Article  PubMed  Google Scholar 

  61. Trost, B. et al. Impact of DNA source on genetic variant detection from human whole-genome sequencing data. J. Med. Genet. 56, 809–817 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Jacquemont, S. et al. Genes to mental health (G2MH): a framework to map the combined effects of rare and common variants on dimensions of cognition and psychopathology. Am. J. Psychiatry 179, 189–203 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zarrei, M. et al. Gene copy number variation and pediatric mental health/neurodevelopment in a general population. Hum. Mol. Genet. 32, 2411–2421 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hamdan, F. F. et al. High rate of recurrent de Novo mutations in developmental and epileptic encephalopathies. Am. J. Hum. Genet. 101, 664–685 (2017).

  65. Jurgens, J. A. et al. Novel variants in TUBA1A cause congenital fibrosis of the extraocular muscles with or without malformations of cortical brain development. Eur. J. Hum. Genet. 29, 816–826 (2021).

  66. Hamdan, F. F. et al. De novo mutations in moderate or severe intellectual disability. PLoS Genet. 10, e1004772 (2014).

  67. Moraes, T. J. et al. The Canadian healthy infant longitudinal development birth cohort study: biological samples and biobanking. Paediatr. Perinat. Epidemiol. 29, 84–92 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  71. Bergström, A. et al. Insights into human genetic variation and population history from 929 diverse genomes. Science https://doi.org/10.1126/science.aay5012 (2020).

  72. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yuen, R. K. C. et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 20, 602–611 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  74. Abyzov, A., Urban, A. E., Snyder, M. & Gerstein, M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21, 974–984 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhu, M. et al. Using ERDS to infer copy-number variants in high-coverage genomes. Am. J. Hum. Genet. 91, 408–421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Trost, B. et al. A comprehensive workflow for read depth-based identification of copy-number variation from whole-genome sequence data. Am. J. Hum. Genet. 102, 142–155 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lott, M. T. et al. mtDNA variation and analysis using Mitomap and Mitomaster. Curr. Protoc. Bioinformatics 44, 1.23.1–1.23.26 (2013).

    Article  PubMed  Google Scholar 

  80. Andrews, R. M. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23, 147 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Dolzhenko, E. et al. ExpansionHunter: a sequence-graph-based tool to analyze variation in short tandem repeat regions. Bioinformatics 35, 4754–4756 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dolzhenko, E. et al. ExpansionHunter Denovo: a computational method for locating known and novel repeat expansions in short-read sequencing data. Genome Biol. 21, 102 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zarrei, M. et al. A large data resource of genomic copy number variation across neurodevelopmental disorders. NPJ Genom. Med. 4, 26 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zarrei, M., MacDonald, J. R., Merico, D. & Scherer, S. W. A copy number variation map of the human genome. Nat. Rev. Genet. 16, 172–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. MacDonald, J. R., Ziman, R., Yuen, R. K., Feuk, L. & Scherer, S. W. The database of genomic variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 42, D986–D992 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell 176, 535–548.e524 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Xiong, H. Y. et al. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 1254806 (2015).

    Article  PubMed  Google Scholar 

  89. Jian, X., Boerwinkle, E. & Liu, X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res. 42, 13534–13544 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Riggs, E. R. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 22, 245–257 (2020).

    Article  PubMed  Google Scholar 

  93. McCormick, E. M. et al. Specifications of the ACMG/AMP standards and guidelines for mitochondrial DNA variant interpretation. Hum. Mutat. 41, 2028–2057 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Manshaei, R. et al. Genes and pathways implicated in tetralogy of Fallot revealed by ultra-rare variant burden analysis in 231 genome sequences. Front. Genet. 11, 957 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pinese, M. et al. The Medical Genome Reference Bank contains whole genome and phenotype data of 2570 healthy elderly. Nat. Commun. 11, 435 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schubert, E., Sander, J., Ester, M., Kriegel, H. P. & Xu, X. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans. Database Syst. 42, 19 (2017).

  97. Fehlings, D. L. et al. CP-NET Clinical Database Platform: genomic architecture of CP (whole genome sequencing). Brain-CODE, https://doi.org/10.60955/fszr-5q79 (2024).

Download references

Acknowledgements

This research was conducted in part through the Childhood Cerebral Palsy Neuroscience Discovery Network (CP-NET) with the support of the Ontario Brain Institute, an independent nonprofit corporation, funded by the Ontario Government. The present study was also funded by Project Grants from the Canadian Institutes of Health Research (grant nos. PJT-153004 and PJT-175329 to R.K.C.Y.), the Research Foundation of the Cerebral Palsy Alliance (grant no. PG4516), Debbie and Don Morrison for support of the CHILD study and the University of Toronto McLaughlin Centre. The Canadian CP Registry was funded by Kids Brain Health Network. R.K.C.Y. is supported by the Hospital for Sick Children’s Research Institute, SickKids Catalyst Scholar in Genetics, Brain Canada and the Azrieli Foundation. CHILD was initially funded by CIHR and AllerGen NCE, and receives support from Women and Children’s Health Research Institute at the University of Alberta (to P.M.). Work at The Centre for Applied Genomics (TCAG) at the Hospital for Sick Children is funded by the Canada Foundation for Innovation (CGEn-MSI, Innovation Fund) and Genome Canada through Ontario Genomics. We thank M. Lorenti for technical assistance with sample preparation and V. Jha, J. Sangster and S. McPherson for assistance with variant validation. We acknowledge Illumina, Inc. for providing sequencing reagents for the CHILD and Inova control cohorts. M.B.A., P.S. and S.E.T. hold Canada Research Chairs. M.O. is a Research Scholar of the Fonds de Recherche du Québec-Santé. During the work presented in this article, J.W.G. held the Scotiabank Chair in Child Health Research at McMaster University. S.W.S. holds the Northbridge Chair in Paediatric Research, a joint hospital–university chair across the University of Toronto, the Hospital for Sick Children and the SickKids Foundation. We thank all participant families for their dedication and commitment to advancing health research.

Author information

Authors and Affiliations

Authors

Contributions

D.L.F., R.F.W., M.O., M.Z., W.E., S.W.S., A. McCormick, A. Kirton, C.H., D.S., J.W.G., N.D., R. Mesterman, S.K., M.S. and A. Kawamura conceived the project. D.L.F., M.O., A. McCormick, A. Kirton, C.H., D.S., J.W.G., N.D. R. Mesterman, S.K., M.S., A. Kawamura and R.F.W. collected the data. M.Z., B. Trost, W.E., J.R.M., E.J.H., B. Thiruvahindrapuram, M.B.A., G.P., J. Wei, R.F.W., R.K.C.Y., S.W.S., D.L.F., M.O., N.S., P.S., S.E.T., P.M., T.J.M., E.S., G.M., D.M., D.J.S., R. Manshaei, T.N., R.S., S.G., K. Ho, J.d.R., W.W.L.S., A. Mowjoodi, G.C., J.L.M., C.R.M., F.F.H., J.G. and K.U. provided the methodology and interpreted the data. S.L., J.d.R., M.H., K. Han, K.G., N.X.B. and K. Hirschfeld validated the data. S.W.S., D.L.F. and M.O. provided the resources. B. Thiruvahindrapuram, J.R.M., J.W., P.M., P.S.D., R.V.P., O.H. and W.W.L.S. curated the data. W.E. and G.P. visualized the data. S.W.S., D.L.F., M.O. and R.F.W. supervised the project. R.F.W., S.L.P., S.A., R.T., P.N., T.B., L.S. and J.L.H. were project administrators. S.W.S., D.L.F., R.F.W., A. McCormick, A. Kirton, C.H., D.S., J.W.G., N.D., R. Mesterman, S.K., M.O., M.S. and A. Kawamura acquired the funding.

Corresponding author

Correspondence to Stephen W. Scherer.

Ethics declarations

Competing interests

Illumina, Inc. provided sequencing reagents for the CHILD and Inova control cohorts. S.W.S. is on the Scientific Advisory Committee of Population Bio, Inc. and serves as a Highly Cited Academic Advisor for the King Abdulaziz University. R.F.W. discloses consulting activities for Guidepoint Global, GLG and Bioinformatics LLC, not related to the present study. D.M. was employed by Deep Genomics at the time of the study and some annotation tools were provided by Deep Genomics. D.J.S. has equity in PhenoTips. The other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Jozef Gecz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table Information, Note 1 and Figs. 1–3.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–10 in a single Excel file with multiple worksheets.

Supplementary Data 1

Source data used to generate Supplementary Table 2.

Source data

Source Data Fig. 1

Data in Excel that were used to generate Fig. 1.

Source Data Fig. 2

Data in Excel that were used to generate Fig. 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fehlings, D.L., Zarrei, M., Engchuan, W. et al. Comprehensive whole-genome sequence analyses provide insights into the genomic architecture of cerebral palsy. Nat Genet 56, 585–594 (2024). https://doi.org/10.1038/s41588-024-01686-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-01686-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing