Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cell subtype-specific effects of genetic variation in the Alzheimer’s disease brain

Abstract

The relationship between genetic variation and gene expression in brain cell types and subtypes remains understudied. Here, we generated single-nucleus RNA sequencing data from the neocortex of 424 individuals of advanced age; we assessed the effect of genetic variants on RNA expression in cis (cis-expression quantitative trait loci) for seven cell types and 64 cell subtypes using 1.5 million transcriptomes. This effort identified 10,004 eGenes at the cell type level and 8,099 eGenes at the cell subtype level. Many eGenes are only detected within cell subtypes. A new variant influences APOE expression only in microglia and is associated with greater cerebral amyloid angiopathy but not Alzheimer’s disease pathology, after adjusting for APOEε4, providing mechanistic insights into both pathologies. Furthermore, only a TMEM106B variant affects the proportion of cell subtypes. Integration of these results with genome-wide association studies highlighted the targeted cell type and probable causal gene within Alzheimer’s disease, schizophrenia, educational attainment and Parkinson’s disease loci.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study design and summary of cell type-specific and subtype-specific cis-eQTL.
Fig. 2: Similarities and differences of cell type-specific eQTLs.
Fig. 3: Replication of eQTL using bulk cortical RNA and RNA from induced pluripotent stem cell lines.
Fig. 4: Chromatin states of cell type-level eQTLs.
Fig. 5: fQTLs between SNPs and cell subtype proportions.
Fig. 6: Overlap of the results from our eQTL and GWAS of selected neurodegenerative and neuropsychiatric diseases.

Similar content being viewed by others

Data availability

Raw sequence and processed data of single-nucleus RNA-seq are available at Synapse (https://www.synapse.org/#!Synapse:syn31512863). To preserve the anonymity of study participants, access to the datasets is restricted and requires a data use certificate (DUC) to be submitted. To submit a DUC, please see https://adknowledgeportal.synapse.org/Data%20Access. Cell (sub)type annotation and cell (sub)type-level eQTL summary statistics are available at Synapse (https://doi.org/10.7303/syn52335732). The cell type-level eQTLs of this study are also available from https://vmenon.shinyapps.io/rosmap_snrnaseq_eqtl/. The VCF files of the WGS are available at Synapse (https://www.synapse.org/#!Synapse:syn11724057). The reference human genome GRCh37 used for WGS variant calling is available from the European Molecular Biology Laboratory-European Bioinformatics Institute (https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_g1k_v37.fasta.gz).

Code availability

All software used in the study is publicly available as described in the Methods and Reporting Summary. The custom code to prepare the pseudobulk gene expression and mapping cis-eQTL can be found at Zenodo (https://zenodo.org/records/10472216) and GitHub (https://github.com/masashi-CU/snuc-eQTL).

References

  1. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stunnenberg, H. G. et al. The International Human Epigenome Consortium: a blueprint for scientific collaboration and discovery. Cell 167, 1145–1149 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Abascal, F. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    Article  Google Scholar 

  4. Aguet, F. et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Article  CAS  Google Scholar 

  5. Ng, B. et al. An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome. Nat. Neurosci. 20, 1418–1426 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Patrick, E. et al. Deconvolving the contributions of cell-type heterogeneity on cortical gene expression. PLoS Comput. Biol. 16, e1008120 (2020).

  7. Donovan, M. K. R., D’Antonio-Chronowska, A., D’Antonio, M. & Frazer, K. A. Cellular deconvolution of GTEx tissues powers discovery of disease and cell-type associated regulatory variants. Nat. Commun. 11, 955 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan, G. et al. CD33 modulates TREM2: convergence of Alzheimer loci. Nat. Neurosci. 18, 1556–1558 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roederer, M. et al. The genetic architecture of the human immune system: a bioresource for autoimmunity and disease pathogenesis. Cell 161, 387–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Young, A. M. H. et al. A map of transcriptional heterogeneity and regulatory variation in human microglia. Nat. Genet. 53, 861–868 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lopes, K. P. et al. Genetic analysis of the human microglial transcriptome across brain regions, aging and disease pathologies. Nat. Genet. 54, 4–17 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Bryois, J. et al. Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders. Nat. Neurosci. 25, 1104–1112 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Green, G. S. et al. Cellular dynamics across aged human brains uncover a multicellular cascade leading to Alzheimer’s disease. Preprint at bioRxiv https://doi.org/10.1101/2023.03.07.531493 (2023).

  14. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cain, A. et al. Multicellular communities are perturbed in the aging human brain and Alzheimer’s disease. Nat. Neurosci. 26, 1267–1280 (2023).

  16. Bennett, D. A. et al. Religious Orders Study and Rush Memory and Aging Project. J. Alzheimers Dis. 64, S161–S189 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353–1358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, Y., Macyczko, J. R., Liu, C.-C. & Bu, G. ApoE4 reduction: an emerging and promising therapeutic strategy for Alzheimer’s disease. Neurobiol. Aging 115, 20–28 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 54, 412–436 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Joseph-Mathurin, N. et al. Amyloid-related imaging abnormalities in the DIAN-TU-001 trial of gantenerumab and solanezumab: lessons from a trial in dominantly inherited Alzheimer disease. Ann. Neurol. 92, 729–744 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lagomarsino, V. N. et al. Stem cell-derived neurons reflect features of protein networks, neuropathology, and cognitive outcome of their aged human donors. Neuron 109, 3402–3420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Allen, M. et al. Association of MAPT haplotypes with Alzheimer’s disease risk and MAPT brain gene expression levels. Alzheimers Res. Ther. 6, 39 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Valenca, G. T. et al. The role of MAPT haplotype H2 and isoform 1N/4R in parkinsonism of older adults. PLoS ONE 11, e0157452 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nott, A. et al. Brain cell type-specific enhancer–promoter interactome maps and disease-risk association. Science 366, 1134–1139 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dimas, A. S. et al. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325, 1246–1250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gamazon, E. R. et al. Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat. Genet. 50, 956–967 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Van Deerlin, V. M. et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat. Genet. 42, 234–239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. eMERGE Consortium. Lessons learned from the eMERGE Network: balancing genomics in discovery and practice. HGG Adv. 2, 100018 (2021).

    Google Scholar 

  31. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, J., Lee, S. H., Wray, N. R., Goddard, M. E. & Visscher, P. M. GCTA-GREML accounts for linkage disequilibrium when estimating genetic variance from genome-wide SNPs. Proc. Natl Acad. Sci. USA 113, E4579–E4580 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matsuo, K. et al. Complement activation in capillary cerebral amyloid angiopathy. Dement. Geriatr. Cogn. Disord. 44, 343–353 (2018).

    Article  Google Scholar 

  34. Xiong, M. et al. APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function. Sci. Transl. Med. 13, eabd7522 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kosoy, R. et al. Genetics of the human microglia regulome refines Alzheimer’s disease risk loci. Nat. Genet. 54, 1145–1154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marsh, S. E. et al. Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. Nat. Neurosci. 25, 306–316 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Sullivan, S. E. & Young-Pearse, T. L. Induced pluripotent stem cells as a discovery tool for Alzheimer’s disease. Brain Res. 1656, 98–106 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Raj, T. et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344, 519–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zabetian, C. P. et al. Association analysis of MAPT H1 haplotype and subhaplotypes in Parkinson’s disease. Ann. Neurol. 62, 137–144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pastor, P. et al. MAPT H1 haplotype is associated with late-onset Alzheimer’s disease risk in APOEɛ4 noncarriers: results from the Dementia Genetics Spanish Consortium. J. Alzheimers Dis. 49, 343–352 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bennett, D. A. et al. Overview and findings from the rush Memory and Aging Project. Curr. Alzheimer Res. 9, 646–663 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mostafavi, S. et al. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer’s disease. Nat. Neurosci. 21, 811–819 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. De Jager, P. L. et al. A multi-omic atlas of the human frontal cortex for aging and Alzheimer’s disease research. Sci. Data 5, 180142 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39, 1–13 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Rheenen, W. et al. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat. Genet. 53, 1636–1648 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Adams, H. H. H. et al. Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nat. Neurosci. 19, 1569–1582 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hibar, D. P. et al. Novel genetic loci associated with hippocampal volume. Nat. Commun. 8, 13624 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Satizabal, C. L. et al. Genetic architecture of subcortical brain structures in 38,851 individuals. Nat. Genet. 51, 1624–1636 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grasby, K. L. et al. The genetic architecture of the human cerebral cortex. Science 367, eaay6690 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gusev, A. et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat. Genet. 50, 538–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the participants of the ROS/MAP study for their participation and generous donation of brains. This work was funded by NIH grant nos. U01AG061356 (P.L.D.J./D.A.B.), RF1AG057473 (P.L.D.J./D.A.B.) and U01AG046152 (P.L.D.J./D.A.B.) as part of the AMP-AD consortium, as well as NIH grant nos. R01AG066831 (V.M.), K25DK128563 (A.K.) and U01AG072572 (P.L.D.J./St George-Hyslop).

Author information

Authors and Affiliations

Authors

Contributions

V.M. and P.L.D.J. conceptualized the study. M.F., Z.G., L.Z., C.M., C.C.W., B.N., G.S.G., O.R.-R., D.P., L.A.-Z., H.L., R.V.P., A.K., B.N.V., K.K., C.J.Y., H.-U.K., G.W., A.R., N.H., J.A.S., Y.W., T.Y.-P., S.M., D.A.B., V.M. and P.L.D.J. carried out the investigation. D.A.B., V.M. and P.L.D.J. acquired the funding. V.M. and P.L.D.J. supervised the study. M.F., Z.G., L.Z. and P.L.D.J. wrote the original manuscript draft. M.F., C.C.W., B.N., G.S.G., K.K., C.J.Y., H.-U.K., T.Y.-P., D.A.B. and P.L.D.J. reviewed and edited the manuscript draft.

Corresponding author

Correspondence to Philip L. De Jager.

Ethics declarations

Competing interests

A.R. is a cofounder and equity holder of Celsius Therapeutics, is an equity holder in Immunitas and was a scientific advisory board member of Thermo Fisher Scientific, Syros Pharmaceuticals, Neogene Therapeutics and Asimov until 31 July 2020. Since 1 August 2020, A.R. is an employee of Genentech with equity in Roche. O.R.-R. has been an employee of Genentech since 19 October 2020. She has given many lectures on the subject of single-cell genomics to a wide variety of audiences and, in some cases, received remuneration to cover time and costs. O.R.-R. and A.R. are coinventors on patent applications filed at the Broad Institute of MIT and Harvard related to single-cell genomics. Since 3 May 2021, D.P. is an employee of Genentech with equity in Roche. The other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Inge Holtman and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, M., Gao, Z., Zeng, L. et al. Cell subtype-specific effects of genetic variation in the Alzheimer’s disease brain. Nat Genet 56, 605–614 (2024). https://doi.org/10.1038/s41588-024-01685-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-01685-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing