Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity

Abstract

Tissues are organized in cellular niches, the composition and interactions of which can be investigated using spatial omics technologies. However, systematic analyses of tissue composition are challenged by the scale and diversity of the data. Here we present CellCharter, an algorithmic framework to identify, characterize, and compare cellular niches in spatially resolved datasets. CellCharter outperformed existing approaches and effectively identified cellular niches across datasets generated using different technologies, and comprising hundreds of samples and millions of cells. In multiple human lung cancer cohorts, CellCharter uncovered a cellular niche composed of tumor-associated neutrophil and cancer cells expressing markers of hypoxia and cell migration. This cancer cell state was spatially segregated from more proliferative tumor cell clusters and was associated with tumor-associated neutrophil infiltration and poor prognosis in independent patient cohorts. Overall, CellCharter enables systematic analyses across data types and technologies to decode the link between spatial tissue architectures and cell plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CellCharter identifies, characterizes and compares spatial clusters.
Fig. 2: CellCharter is accurate, scalable and flexible.
Fig. 3: Spatial cellular niches in the spleen of healthy mice and mice affected by systemic lupus.
Fig. 4: Spatial transcriptomics in NSCLC.
Fig. 5: Spatial interactions among cancer cell states and the TME in LUAD.
Fig. 6: TANs and response to hypoxia are associated with worse patient prognosis.

Similar content being viewed by others

Data availability

The DLPFC Visium dataset was downloaded from the project’s GitHub page (https://github.com/LieberInstitute/HumanPilot). The mouse spleen CODEX dataset was obtained from the original publication5 (https://data.mendeley.com/datasets/zjnpwh8m5b/1). The NSCLC CosMx dataset was obtained from the original publication41 (https://nanostring.com/products/cosmx-spatial-molecular-imager/nsclc-ffpe-dataset/). The lung cancer MERFISH data was downloaded from Vizgen’s website (https://info.vizgen.com/ffpe-showcase). The lung cancer IMC dataset was obtained upon request to the corresponding author. The extended single-cell lung cancer atlas (LuCA)63 was downloaded from cellxgene (https://cellxgene.cziscience.com/collections/edb893ee-4066-4128-9aec-5eb2b03f8287). The mouse brain RNA + ATAC multiomics dataset was downloaded from the UCSC Cell and Genome Browser (https://brain-spatial-omics.cells.ucsc.edu/). The lung cancer bulk RNA-seq datasets were retrieved from the original publications11,64,65,66,67,68,69,70,71 through the following links and Gene Expression Omnibus accession numbers: https://doi.org/10.5281/zenodo.3941896, https://gdac.broadinstitute.org/ (LUAD, rnaseqv2-RSEM_genes), GSE68465, GSE72094, GSE31210, GSE50081, https://src.gisapps.org/OncoSG_public/ (GIS031), GSE37745 and https://xenabrowser.net/datapages/.

Code availability

CellCharter is released as an open-source Python library on GitHub at https://github.com/CSOgroup/cellcharter. Code to reproduce all the analyses presented in this manuscript is available at https://github.com/CSOgroup/cellcharter_analyses.

References

  1. Chappell, L., Russell, A. J. C. & Voet, T. Single-cell (multi)omics technologies. Annu. Rev. Genomics Hum. Genet. 19, 15–41 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling technologies. Nat. Rev. Genet. 23, 741–759 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article  PubMed  Google Scholar 

  7. Callaway, E. M. et al. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).

    Article  CAS  Google Scholar 

  8. Bassiouni, R., Gibbs, L. D., Craig, D. W., Carpten, J. D. & McEachron, T. A. Applicability of spatial transcriptional profiling to cancer research. Mol. Cell 81, 1631–1639 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Hunter, M. V., Moncada, R., Weiss, J. M., Yanai, I. & White, R. M. Spatially resolved transcriptomics reveals the architecture of the tumor-microenvironment interface. Nat. Commun. 12, 6278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tavernari, D. et al. Nongenetic evolution drives lung adenocarcinoma spatial heterogeneity and progression. Cancer Discov. 11, 1490–1507 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Karras, P. et al. A cellular hierarchy in melanoma uncouples growth and metastasis. Nature 610, 190–198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lomakin, A. et al. Spatial genomics maps the structure, nature and evolution of cancer clones. Nature 611, 594–602 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics.Nat. Biotechnol. 41, 773–782 (2022).

    Article  PubMed  Google Scholar 

  16. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cho, C.-S. et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184, 3559–3572 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Fu, X. et al. Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain. Cell 185, 4621–4633 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, D. et al. Spatial epigenome–transcriptome co-profiling of mammalian tissues. Nature 616, 113–122 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Sorin, M. et al. Single-cell spatial landscapes of the lung tumour immune microenvironment. Nature 614, 548–554 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chatzis, S. P. & Tsechpenakis, G. The infinite hidden Markov random field model. IEEE Trans. Neural Netw. 21, 1004–1014 (2010).

    Article  PubMed  Google Scholar 

  26. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. & Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw. 20, 61–80 (2009).

    Article  PubMed  Google Scholar 

  27. Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. Preprint at https://doi.org/10.48550/arXiv.1609.02907 (2017).

  28. Zhao, E. et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39, 1375–1384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, W. et al. Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data. Nucleic Acids Res. 50, e72 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu, J. et al. SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 18, 1342–1351 (2021).

    Article  PubMed  Google Scholar 

  31. Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2021.06.15.448542 (2021).

  32. Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13, 1739 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu, Z. et al. Graph deep learning for the characterization of tumour microenvironments from spatial protein profiles in tissue specimens. Nat. Biomed. Eng. 6, 1435–1448 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Kim, J. et al. Unsupervised discovery of tissue architecture in multiplexed imaging. Nat. Methods 19, 1653–1661 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Shang, L. & Zhou, X. Spatially aware dimension reduction for spatial transcriptomics. Nat. Commun. 13, 7203 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yuan, Z. et al. SOTIP is a versatile method for microenvironment modeling with spatial omics data. Nat. Commun. 13, 7330 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Danenberg, E. et al. Breast tumor microenvironment structures are associated with genomic features and clinical outcome. Nat. Genet. 54, 660–669 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Karimi, E. et al. Single-cell spatial immune landscapes of primary and metastatic brain tumours. Nature 614, 555–563 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ali, H. R. et al. Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer. Nat. Cancer 1, 163–175 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, M. et al. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. Nature 598, 137–143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at https://doi.org/10.48550/arXiv.1312.6114 (2014).

  43. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer learning. Nat. Biotechnol. 40, 121–130 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Fowlkes, E. B. & Mallows, C. L. A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78, 553–569 (1983).

    Article  Google Scholar 

  46. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat. Neurosci. 24, 425–436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974).

    Article  Google Scholar 

  49. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

    Article  Google Scholar 

  50. Allen Institute for Brain Science. Adult mouse—coronal sections. Allen Brain Atlas https://atlas.brain-map.org (2011).

  51. Ramiscal, R. R. & Vinuesa, C. G. T-cell subsets in the germinal center. Immunol. Rev. 252, 146–155 (2013).

    Article  PubMed  Google Scholar 

  52. Pusztaszeri, M. P., Seelentag, W. & Bosman, F. T. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand Factor, and Fli-1 in normal human tissues. J. Histochem. Cytochem. 54, 385–395 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yuan, S., Norgard, R. J. & Stanger, B. Z. Cellular plasticity in cancer. Cancer Discov. 9, 837–851 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Swanton, C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 72, 4875–4882 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Black, J. R. M. & McGranahan, N. Genetic and non-genetic clonal diversity in cancer evolution. Nat. Rev. Cancer 21, 379–392 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, Y. et al. N-myc downstream regulated gene 1 (NDRG1) promotes the stem-like properties of lung cancer cells through stabilized c-Myc. Cancer Lett. 401, 53–62 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Ma, J., Gao, Q., Zeng, S. & Shen, H. Knockdown of NDRG1 promote epithelial–mesenchymal transition of colorectal cancer via NF-κB signaling. J. Surg. Oncol. 114, 520–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Zhu, H. & Zhang, S. Hypoxia inducible factor-1α/vascular endothelial growth factor signaling activation correlates with response to radiotherapy and its inhibition reduces hypoxia-induced angiogenesis in lung cancer. J. Cell. Biochem. 119, 7707–7718 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Rajarathnam, K., Schnoor, M., Richardson, R. M. & Rajagopal, S. How do chemokines navigate neutrophils to the target site: dissecting the structural mechanisms and signaling pathways. Cell. Signal. 54, 69–80 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Behrens, C. et al. EZH2 protein expression associates with the early pathogenesis, tumor progression, and prognosis of non-small cell lung carcinoma. Clin. Cancer Res. 19, 6556–6565 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Valadez-Cosmes, P., Raftopoulou, S., Mihalic, Z. N., Marsche, G. & Kargl, J. Myeloperoxidase: growing importance in cancer pathogenesis and potential drug target. Pharmacol. Ther. 236, 108052 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Salcher, S. et al. High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. Cancer Cell 40, 1503–1520 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Collisson, E. A. et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

    Article  CAS  Google Scholar 

  65. Shedden, K. et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat. Med. 14, 822–827 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schabath, M. B. et al. Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene 35, 3209–3216 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Okayama, H. et al. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 72, 100–111 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Der, S. D. et al. Validation of a histology-independent prognostic gene signature for early-stage, non–small-cell lung cancer including stage IA patients. J. Thorac. Oncol. 9, 59–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, J. et al. Genomic landscape of lung adenocarcinoma in East Asians. Nat. Genet. 52, 177–186 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Mezheyeuski, A. et al. Multispectral imaging for quantitative and compartment-specific immune infiltrates reveals distinct immune profiles that classify lung cancer patients. J. Pathol. 244, 421–431 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Virshup, I. et al. The scverse project provides a computational ecosystem for single-cell omics data analysis. Nat. Biotechnol. 41, 604–606 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhao, T. et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 601, 85–91 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Deng, Y. et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609, 375–383 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vickovic, S. et al. SM-Omics is an automated platform for high-throughput spatial multi-omics. Nat. Commun. 13, 795 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ben-Chetrit, N. et al. Integration of whole transcriptome spatial profiling with protein markers.Nat. Biotechnol. 41, 788–793 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen, R. J. et al. Scaling vision transformers to gigapixel images via hierarchical self-supervised learning. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 16144–16155, (IEEE, 2022).

  79. Blaisdell, A. et al. Neutrophils oppose uterine epithelial carcinogenesis via debridement of hypoxic tumor cells. Cancer Cell 28, 785–799 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yee, P. P. et al. Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nat. Commun. 11, 5424 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Su, H. et al. Identification of hub genes associated with neutrophils infiltration in colorectal cancer. J. Cell. Mol. Med. 25, 3371–3380 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bruni, D., Angell, H. K. & Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Howard, R., Kanetsky, P. A. & Egan, K. M. Exploring the prognostic value of the neutrophil-to-lymphocyte ratio in cancer. Sci. Rep. 9, 19673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hagberg, A., Swart, P. J. & Schult, D. A. Exploring network structure, dynamics, and function using networkX. In Proceedings of the 7th Python in Science conference (SciPy 08) (eds Varoquaux, G., Vaught, T. & Millman, J.) 11–15 (OSTI.GOV, 2008)

  85. Martens, L. D., Fischer, D. S., Theis, F. J. & Gagneur, J. Modeling fragment counts improves single-cell ATAC-seq analysis. Preprint at bioRxiv https://doi.org/10.1101/2022.05.04.490536 (2022).

  86. Edelsbrunner, H., Kirkpatrick, D. & Seidel, R. On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 29, 551–559 (1983).

    Article  Google Scholar 

  87. Zhang, T. Y. & Suen, C. Y. A fast parallel algorithm for thinning digital patterns. Commun. ACM 27, 236–239 (1984).

    Article  Google Scholar 

  88. Walt van der, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).

    Article  Google Scholar 

  89. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Gottardo (Centre hositalier universitaire vaudois, Lausanne), D. Gfeller (University of Lausanne), G. La Manno and E. Oricchio (École Polytechnique Fédérale de Lausanne) for their precious feedback during the development of this project. This project was in part supported by the Swiss Institute for Experimental Cancer Research TANDEM Research Project (G.C.). D.T. is supported by the Personalized Health and Related Technologies (PHRT) iPostdoc Project (grant no. 2022-476). A.S.-M. is supported by the PHRT Technology transfer project (grant no. 2021-553).

Author information

Authors and Affiliations

Authors

Contributions

M.V. designed the algorithm and performed the computational analyses. D.T. analyzed the RNA-seq datasets. A.S.-M. contributed to the interpretation of the CODEX mouse spleen results. L.A.W. provided the data for the IMC lung cancer dataset and contributed to the interpretation of the results. M.V. and G.C. designed the project and wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Giovanni Ciriello.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Naveed Ishaque, Hamid Ali, Shashwat Sahay and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 CellCharter’s features and benchmarking of spatial clustering methods.

a, Example of 3 spatial clusters (color coded) in a tissue sample of mouse spleen analyzed by CODEX (left) and symmetric (top right) vs. asymmetric (bottom right) neighborhood enrichment analysis. b, Schematic representation of the four metrics (curl, elongation, linearity, and purity) implemented in CellCharter to describe the shape of spatial clusters. c, Example of spatial cluster components (color coded) in a tissue sample of mouse spleen analyzed by CODEX (left). Heatmap representation of the shape metric values for each cluster component (right). Cluster components are grouped in representative shape classes: linear, round, circular, and irregular. d, Manual annotations of the Visium DLPFC samples. e, Previously adopted strategy based on hyperparameter tuning and clustering testing on the same dataset. f, strategy proposed in this study based on independent tuning and testing datasets. g, Mean Adjusted Rand Index (ARI) for each DLPFC sample (over 10 repetitions) obtained by the listed methods upon performing individual spatial clustering of the samples (n = 9 samples). The boxes show the quartiles of the dataset while the whiskers extend to points that lie within 1.5 inter-quartile ranges (IQRs) of the lower and upper quartiles. h, ARI for each DLPFC sample obtained by the listed methods upon performing joint clustering of all samples (n = 9 samples). The boxes show the quartiles of the dataset while the whiskers extend to points that lie within 1.5 IQRs of the lower and upper quartiles.

Extended Data Fig. 2 Comparison between CellCharter STAGATE and evaluation of cluster stability analysis.

a, Runtime divided by processing step of the two best-performing methods (STAGATE and CellCharter) in clustering all 12 samples of the DLPFC dataset on GPU and CPU. b, From left to right: Bayesian Information Criterion (BIC), Akaike Information Criterion (AIC), and Negative Log-Likelihood (NLL) values (y-axis) for a number of clusters ranging between 2 and 100 (x-axis) for the pilot (12 samples) and full (42 samples) version of the DLPFC dataset. c, Purity of the n = 756 cluster components in the CODEX mouse spleen dataset for the clusters of the two best-performing methods. The boxes show the quartiles of the dataset while the whiskers extend to points that lie within 1.5 inter-quartile ranges (IQRs) of the lower and upper quartiles. d, CellCharter cluster stability for range of numbers of cluster (x-axis) using a concatenation of the embeddings from chromatin accessibility and gene expression. The most stable cluster solution is highlighted. Data presented as mean values (solid line) with a 95% confidence interval (shaded area).

Extended Data Fig. 3 Characterization of CellCharter’s spatial clusters of the CODEX mouse spleen dataset.

a, CellCharter’s spatial cluster at n = 11 clusters for all cells of the 3 healthy (BALBc) and 6 systemic lupus erythematosus samples (MRL). b, (left) Spatial distribution of cells assigned to spatial cluster C1 in three selected samples. (right) Representative images of immunofluorescence staining artifacts corresponding to C1: autofluorescence (1), missing tile (2), fluorophore accumulation (3).

Extended Data Fig. 4 Differences in the spatial organization between healthy and systemic lupus spleen.

a, Spatial distribution of CD4+ T cells, B cells, and B220+ T cells in the clusters associated to the germinal center, marginal zone, and GC-PALS boundary for representative examples of healthy (BALBc-1), early lupus (MRL-4) and intermediate lupus (MRL-8) spleen. b, Normalized intensity of ERTR7, CD31, and Ly6G markers in the intermediate lupus sample MRL-5. The MRL samples show the presence of two distinct clusters associated with trabecular structures. Insets (1 to 6) highlight the different expression of the markers in correspondence trabecular clusters C10 (insets 2, 4, 6) and C11 (insets 1, 3, 5).

Extended Data Fig. 5 Characterization of CellCharter’s spatial clusters of the CosMx non-small cell lung cancer (NSCLC) dataset.

a, CellCharter’s spatial cluster at n = 20 clusters for all cells of the CosMx NSCLC samples. b, Entropy of patient proportion between n = 10 tumor microenvironment-enriched (TME-enriched) clusters and n = 10 tumor-enriched clusters. The thick central line of each box plot represents the median entropy, the bounding box corresponds to the 25th–75th percentiles, and the whiskers extend up to 1.5 times the interquartile range. p-values computed by two-tailed Wilcoxon test. c, Immune and stromal cell type fractions in tumor samples from 5 non-small cell lung cancer patients (LUAD: lung adenocarcinoma, LUSC: lung squamous cell carcinoma, NK-cell: natural killer cell).

Extended Data Fig. 6 Cell signature scores in two non-small cell lung cancer (NSCLC) patients.

a, Gene expression signature score of n = 41,088 tumor cells in spatial clusters C0 and C12. The boxes show the quartiles of the dataset while the whiskers extend to points that lie within 1.5 inter-quartile ranges (IQRs) of the lower and upper quartile. b-e, Gene expression signature score of tumor cells of patients LUAD-9 and LUAD-12 for four gene signatures: neutrophil chemotaxis, hypoxia, epithelial-to-mesenchymal transition (EMT-II) and cell proliferation. The boxes show the quartiles of the dataset while the whiskers extend to points that lie within 1.5 IQRs of the lower and upper quartiles.

Extended Data Fig. 7 Spatial organization of tumor associated neutrophils and hypoxic tumor cells in CellCharter and STAGATE.

a, Average hypoxia gene signature score for tumor cells at increasing hop-distance from all neutrophils (left), neutrophils assigned to spatial cluster C11 (center), and neutrophils not assigned in cluster C11 (right). Error bands correspond to the 95% confidence interval. b, cluster concordance between CellCharter (rows) and STAGATE (columns). c, Example of CellCharter and STAGATE clusters on LUAD-9 R1. d, Hypoxia and cell proliferation signatures in n = 128,454 cells of tumor-enriched spatial clusters determined with STAGATE (NK: natural killer cell, Treg: regulatory T cell, mDC: myeloid dendritic cell, pDC: plasmacytoid dendritic cell). The boxes show the quartiles of the dataset while the whiskers extend to points that lie within 1.5 inter-quartile ranges (IQRs) of the lower and upper quartiles. e, Cell type enrichment of tumor-enriched clusters and neutrophil-enriched clusters obtained with STAGATE. f, Coarse cell type labels in LUAD-9 R1. g, Comparison of neutrophil-enriched clusters detected by STAGATE (left, C13) and CellCharter (right, C11).

Extended Data Fig. 8 Association between tumor hypoxia and neutrophil infiltration in the MERFISH and Image Mass Cytometry (IMC) datasets.

a, Cluster stability (y-axis) for range of numbers of cluster (x-axis) on the full MERFISH dataset. Data presented as mean values (solid line) with a 95% confidence interval (shaded area). b, Runtime divided by processing step of CellCharter in clustering the MERFISH dataset (left) and IMC dataset (right) on GPU and CPU. c, Cluster stability (y-axis) for range of numbers of cluster (x-axis) on the 2 lung cancer samples of the MERFISH dataset. Data presented as mean values (solid line) with a 95% confidence interval (shaded area). d, Cell type enrichment of tumor-enriched and tumor microenvironment-enriched (TME-enriched) clusters in HumanLungCancerPatient1 obtained with CellCharter. e, Neighborhood enrichment between the TME-enriched clusters (source) and the tumor-enriched clusters (target) in HumanLungCancerPatient1. p-values computed by unpaired two-sided t-test. f, Cell type enrichment analysis (left) and hazard ratio and Cox-regression p-values (right) for the clusters C15 and C17 identified by CellCharter in n = 413 samples of the IMC dataset. Data are presented as mean values with 95% confidence interval. g, Cell type enrichment of tumor-enriched and TME-enriched clusters in the IMC dataset obtained with CellCharter. Only TME clusters for which there is a positive neighborhood enrichment with at least one tumor-enriched cluster are shown.

Extended Data Fig. 9 Association of tumor-associated neutrophils (TANs), normal-associated neutrophils (NANs), and hypoxia with overall survival.

a, Pearson correlation between hypoxia gene signature score and TAN score in 9 bulk RNA-seq datasets of lung adenocarcinoma11,64,65,66,67,68,69,70,71. Data are presented as mean values (solid line) with a 95% confidence interval (shaded area). b, Pearson correlation between hypoxia gene signature score and NAN score in 9 bulk RNA-seq datasets of lung adenocarcinoma. Data are presented as mean values (solid line) with a 95% confidence interval (shaded area). c, Association of TAN, NAN, and hypoxia score with overall survival, corrected for sex, age, and stage, in the 7 bulk RNA-seq datasets that contained survival information64,65,66,67,68,69,70. Data are presented as mean values with 95% confidence interval.

Supplementary information

Supplementary Information

Supplementary methods and legends to Supplementary Tables 1–3.

Reporting Summary

Peer Review File

Supplementary Table 1

Supplementary Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varrone, M., Tavernari, D., Santamaria-Martínez, A. et al. CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity. Nat Genet 56, 74–84 (2024). https://doi.org/10.1038/s41588-023-01588-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01588-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer