Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits

Abstract

The orange subfamily (Aurantioideae) contains several Citrus species cultivated worldwide, such as sweet orange and lemon. The origin of Citrus species has long been debated and less is known about the Aurantioideae. Here, we compiled the genome sequences of 314 accessions, de novo assembled the genomes of 12 species and constructed a graph-based pangenome for Aurantioideae. Our analysis indicates that the ancient Indian Plate is the ancestral area for Citrus-related genera and that South Central China is the primary center of origin of the Citrus genus. We found substantial variations in the sequence and expression of the PH4 gene in Citrus relative to Citrus-related genera. Gene editing and biochemical experiments demonstrate a central role for PH4 in the accumulation of citric acid in citrus fruits. This study provides insights into the origin and evolution of the orange subfamily and a regulatory mechanism underpinning the evolution of fruit taste.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fruit characteristics of the orange subfamily and differences in fruit citric acid levels among Citrus-related genera, wild Citrus and domesticated Citrus.
Fig. 2: Phylogenetic tree and biogeography of the orange subfamily.
Fig. 3: Pangenome analysis of the orange subfamily.
Fig. 4: Solo LTRs contribute to genome size variation and affect neighboring gene expression.
Fig. 5: Genomic variations in species from the orange subfamily.
Fig. 6: Sequence analysis and gene editing of CitPH4.
Fig. 7: Characterization of PH4, AN1 and PH5.

Similar content being viewed by others

Data availability

Genome assemblies have been deposited in the NCBI under accession nos. JAEVFN000000000 (M. paniculata), JASUUF000000000 (C. lansium), JASUUG000000000 (L. scandens). JASUUL000000000 (A. marmelos), JASUUH000000000 (C. gilletiana), JASUUI000000000 (A. buxifolia), JASUUJ000000000 (C. mangshanensis), JAUJEM000000000 (C. ichangensis), JAUJEF000000000 (C. linwuensis), JASUUK000000000 (C. australasica), JAUJEN000000000 (C. hongheensis), JAUJEG000000000 (C. maxima ‘Majia’). We also deposited all genome assemblies in the National Genomics Data Center (https://ngdc.cncb.ac.cn/) under accession nos. GWHDODA00000000 (M. paniculata), GWHDODB00000000 (C. lansium), GWHDODC00000000 (L. scandens). GWHDODD00000000 (A. marmelos), GWHDODE00000000 (C. gilletiana), GWHDODF00000000 (A. buxifolia), GWHDODG00000000 (C. mangshanensis), GWHDODH00000000 (C. ichangensis), GWHDODI00000000 (C. linwuensis), GWHDODJ00000000 (C. australasica), GWHDODK00000000 (C. hongheensis), GWHDODL00000000 (C. maxima ‘Majia’). The assembled genomes and annotations are also available at http://citrus.hzau.edu.cn/download.php. The detailed accession numbers of the whole-genome sequencing data are listed in Supplementary Table 4. The graph-based pangenome is available at https://figshare.com/s/a1e8071844912a7495ac. Source data are provided with this paper.

Code availability

The code used in this paper is available at GitHub (https://github.com/yilunhuangyue/citrus_pan) and Zenodo (https://doi.org/10.5281/zenodo.8108939)107.

References

  1. Swingle, W. T. & Reece, P. C. In The Citrus Industry, History, World Distribution, Botany, and Varieties, Vol. 1 (eds Reuther, W. et al.) 190–143 (Univ. of California Press, 1967).

  2. Morton, C. M. & Telmer, C. New subfamily classification for the Rutaceae. Ann. Mo. Bot. Gard. 99, 620–641 (2014).

    Article  Google Scholar 

  3. Bayer, R. J. et al. A molecular phylogeny of the orange subfamily (Rutaceae: Aurantioideae) using nine cpDNA sequences. Am. J. Bot. 96, 668–685 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Tanaka, T. Fundamental discussion of Citrus classification. Stud. Citrologia 14, 1–6 (1977).

    Google Scholar 

  5. Tolkowsky, S. Hesperides: a History of the Culture and Use of Citrus Fruits (J. Bale, Sons & Curnow, 1938).

  6. Mabberley, D. J. Citrus (Rutaceae): a review of recent advances in etymology, systematics and medical applications. Blumea 49, 481–498 (2004).

    Article  Google Scholar 

  7. Mabberley, D. J. A classification for edible Citrus: an update, with a note on Murraya (Rutaceae). Telopea 25, 271–284 (2022).

    Article  Google Scholar 

  8. Pan, A. D. Rutaceae leaf fossils from the Late Oligocene (27.23 Ma) Guang River flora of northwestern Ethiopia. Rev. Palaeobot. Palynol. 159, 188–194 (2010).

    Article  Google Scholar 

  9. Wu, G. A. et al. Genomics of the origin and evolution of Citrus. Nature 554, 311–316 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Schwartz, T., Nylinder, S., Ramadugu, C., Antonelli, A. & Pfeil, B. E. The origin of oranges: a multi-locus phylogeny of Rutaceae subfamily Aurantioideae. Syst. Bot. 40, 1053–1062 (2015).

    Article  Google Scholar 

  11. Wang, L. et al. Genome of wild mandarin and domestication history of mandarin. Mol. Plant 11, 1024–1037 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Scora, R. W. Biochemistry, taxonomy and evolution of modern cultivated. In Proc. Sixth International Citrus Congress, Vol. 1 (eds. Goren, R. & Mendel, K.) 277–289 (1988).

  13. Garcia-Lor, A. et al. A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the ‘true citrus fruit trees’ group (Citrinae, Rutaceae) and the origin of cultivated species. Ann. Bot. 111, 1–19 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Nicolosi, E. et al. Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor. Appl. Genet. 100, 1155–1166 (2000).

    Article  CAS  Google Scholar 

  15. Webber, H. J., Reuther, W. & Lawton, H. W. In The Citrus industry (eds Reuther, W. et al.) 1–37 (Univ. of California Press, 1967).

  16. Rouseff, R. L., Ruiz Perez-Cacho, P. & Jabalpurwala, F. Historical review of citrus flavor research during the past 100 years. J. Agric. Food Chem. 57, 8115–8124 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, L. et al. Somatic variations led to the selection of acidic and acidless orange cultivars. Nat. Plants 7, 954–965 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Sadka, A., Dahan, E., Or, E. & Cohen, L. NADP+-isocitrate dehydrogenase gene expression and isozyme activity during citrus fruit development. Plant Sci. 158, 173–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Terol, J., Soler, G., Talon, M. & Cercos, M. The aconitate hydratase family from Citrus. BMC Plant Biol. 10, 222 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li, S. et al. CrMYB73, a PH-like gene, contributes to citric acid accumulation in citrus fruit. Sci. Hortic. 197, 212–217 (2015).

    Article  CAS  Google Scholar 

  21. Shi, C.-Y. et al. CsPH8, a P-type proton pump gene, plays a key role in the diversity of citric acid accumulation in citrus fruits. Plant Sci. 289, 110288 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Strazzer, P. et al. Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex. Nat. Commun. 10, 744 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Spelt, C., Quattrocchio, F., Mol, J. & Koes, R. ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell 14, 2121–2135 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Butelli, E. et al. Noemi controls production of flavonoid pigments and fruit acidity and illustrates the domestication routes of modern citrus varieties. Curr. Biol. 29, 158–164 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Huang, Y. et al. Genome of a citrus rootstock and global DNA demethylation caused by heterografting. Hortic. Res. 8, 69 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, X. et al. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat. Genet. 49, 765–772 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Wu, G. A. et al. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat. Biotechnol. 32, 656–662 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu, Q. et al. The draft genome of sweet orange (Citrus sinensis). Nat. Genet. 45, 59–66 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, C. et al. Genome sequencing and CRISPR/Cas9 gene editing of an early flowering Mini-Citrus (Fortunella hindsii). Plant Biotechnol. J. 17, 2199–2210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, Y. et al. Pan-genome of wild and cultivated soybeans. Cell 182, 162–176 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Walkowiak, S. et al. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277–283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jayakodi, M. et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588, 284–289 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao, L. et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 51, 1044–1051 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Sun, X. et al. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat. Genet. 52, 1423–1432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Hinsbergen, D. J. J. et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl Acad. Sci. USA 109, 7659–7664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Writing Group of the Stratigraphic Table of the South-Central Geological Region. Stratigraphic Table of the South-Central Geological Region [in Chinese] (China Geological Publishing House, 1974).

  37. Kepiro, J. L. & Roose, M. L. AFLP markers closely linked to a major gene essential for nucellar embryony (apomixis) in Citrus maxima × Poncirus trifoliata. Tree Genet. Genomes 6, 1–11 (2009).

    Article  Google Scholar 

  38. Yasuda, K., Yahata, M. & Kunitake, H. Phylogeny and classification of kumquats (Fortunella spp.) inferred from CMA karyotype composition. Hort. J. 85, 115–121 (2016).

    Article  CAS  Google Scholar 

  39. Xiao, S. Y., Zhang, W. C. & Chen, J. S. Segregation and inheritance of a few morphological and physiological traits in the progeny of Huanong Bendizao × Ichang Papeda [in Chinese]. China Citrus 23, 3–6 (1994).

    Google Scholar 

  40. Smith, M. W., Gultzow, D. L. & Newman, T. K. First fruiting intergeneric hybrids between Citrus and Citropsis. J. Am. Soc. Hortic. Sci. 138, 57–63 (2013).

    Article  Google Scholar 

  41. Li, R. T., Zhang, Y. N., Chen, M. L. & Jiang, K. J. Taxonomy analysis on wild mandarins originating from Mangshan Mountain [in Chinese]. Guangdong Agric. Sci. 8, 11–13 (2009).

    Google Scholar 

  42. Ding, S. Q. et al. A new species of Poncirus from China. Acta Bot. Yunnan. 6, 292–293 (1984).

    Google Scholar 

  43. Gmitter, F. G. & Hu, X. The possible role of Yunnan, China, in the origin of contemporary Citrus species (Rutaceae). Econ. Bot. 44, 267–277 (1990).

    Article  Google Scholar 

  44. Kumar, S., Nair, K. N. & Jena, S. N. Molecular differentiation in Indian Citrus L.(Rutaceae) inferred from nrDNA ITS sequence analysis. Genet. Resour. Crop Evol. 60, 59–75 (2013).

    Article  CAS  Google Scholar 

  45. Tanaka, T. Species Problem in Citrus (Japanese Society for the Promotion of Science, 1954).

  46. Yang, Y., Pan, Y., Gong, X. & Fan, M. Genetic variation in the endangered Rutaceae species Citrus hongheensis based on ISSR fingerprinting. Genet. Resour. Crop Evol. 57, 1239–1248 (2010).

    Article  Google Scholar 

  47. Zhou, J. Exploration on the original region of the citrus plants. In Proc. International Citrus Symposium (eds Huang P.Y. et al.) (International Academic Publishers, 1991).

  48. Xie, S., Manchester, S. R., Liu, K., Wang, Y. & Sun, B. Citrus linczangensis sp. n., a leaf fossil of Rutaceae from the late Miocene of Yunnan, China. Int. J. Plant Sci. 174, 1201–1207 (2013).

    Article  Google Scholar 

  49. Butelli, E. et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24, 1242–1255 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Verweij, W. et al. An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat. Cell Biol. 10, 1456–1462 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Arbab, I. A. et al. A review of traditional uses, phytochemical and pharmacological aspects of selected members of Clausena genus (Rutaceae). J. Med. Plants Res. 6, 5107–5118 (2012).

    Article  Google Scholar 

  52. Khan, I. A. In Citrus Genetics, Breeding and Biotechnology (ed Khan, I.) 47–51 (CABI, 2007).

  53. Rajeswara Rao, B. R. In Essential Oils in Food Preservation, Flavor and Safety (ed Preedy V.) 385–394 (Academic Press, 2016).

  54. Yasir, M., Tripathi, M. K., Singh, P. & Shrivastava, R. The genus Glycosmis [Rutaceae]: a comprehensive review on its phytochemical and pharmacological perspectives. Nat. Prod. J. 9, 98–124 (2019).

    CAS  Google Scholar 

  55. Nguyen, C. H. et al. Molecular differentiation of the Murraya paniculata complex (Rutaceae: Aurantioideae: Aurantieae). BMC Evol. Biol. 19, 236 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ladaniya, M. S. In Citrus Fruit: Biology, Technology and Evaluation 13–65 (Academic Press, 2008).

  57. Talon, M. et al. In The Genus Citrus (eds Talon M. et al.) 16 (Woodhead Publishing, 2020).

  58. Carbonell-Caballero, J. et al. A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus Citrus. Mol. Biol. Evol. 32, 2015–2035 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang, X. et al. Molecular phylogeography and population evolution analysis of Citrus ichangensis (Rutaceae). Tree Genet. Genomes 13, 29 (2017).

    Article  Google Scholar 

  60. Chen, P. The Investigation and Genetic Diversity Evaluation of Wild Hongkong Kumquat (Fortunella hindsii Swingle) in China. MD thesis, Huazhong Agricultural Univ. (2011).

  61. Pang, X., Wen, X., Hu, C. & Deng, X. Genetic diversity of Poncirus accessions as revealed by amplified fragment length polymorphism (AFLP). J. Hortic. Sci. Biotechnol. 81, 269–275 (2006).

    Article  CAS  Google Scholar 

  62. Wu, Y., Liu, Q., Xiang, Z.-H. & Zhang, D. G. Citrus × pubinervia, a new natural hybrid species from central China. Phytotaxa 523, 239–246 (2021).

    Article  Google Scholar 

  63. El Baidouri, M. & Panaud, O. Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution. Genome Biol. Evol. 5, 954–965 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vitte, C. & Panaud, O. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet. Genome Res. 110, 91–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Wu, G. A. et al. Diversification of mandarin citrus by hybrid speciation and apomixis. Nat. Commun. 12, 4377 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, H., Wu, S., Li, A. & Ruan, J. SMARTdenovo: a de novo assembler using long noisy reads. GigaByte 2021, gigabyte15 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32, 2103–2110 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, Y. et al. Efficient assembly of nanopore reads via highly accurate and intact error correction. Nat. Commun. 12, 60 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 2253–2255 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article  PubMed  Google Scholar 

  73. Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ou, S. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics 12, 246 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yang, Z. The BPP program for species tree estimation and species delimitation. Curr. Zool. 61, 854–865 (2015).

    Article  Google Scholar 

  87. Li, L., Stoeckert, C. J. Jr. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Stamatakis, A. Using RAxML to infer phylogenies. Curr. Protoc. Bioinformatics 51, 6.14.1–6.14.14 (2015).

    Article  PubMed  Google Scholar 

  90. De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sanderson, M. J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Yu, Y., Harris, A. J., Blair, C. & He, X. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46–49 (2015).

    Article  PubMed  Google Scholar 

  94. Delcher, A. L., Salzberg, S. L. & Phillippy, A. M. Using MUMmer to identify similar regions in large sequence sets. Curr. Protoc. Bioinformatics Chapter 10, Unit 10.3 (2003).

    PubMed  Google Scholar 

  95. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Jeffares, D. C. et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8, 14061 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hickey, G. et al. Genotyping structural variants in pangenome graphs using the vg toolkit. Genome Biol. 21, 35 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ng, P. C. & Henikoff, S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sheng, L. et al. Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit. Food Chem. 216, 138–145 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Duan, Y. X. et al. High efficient transgenic plant regeneration from embryogenic calluses of Citrus sinensis. Biol. Plant. 51, 212–216 (2007).

    Article  CAS  Google Scholar 

  105. Xing, H. et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 14, 327 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).

    Article  Google Scholar 

  107. yilunhuangyue (2023). yilunhuangyue/citrus_pan: Citrus_pan V1.1. Zenodo; https://doi.org/10.5281/zenodo.8108939

Download references

Acknowledgements

We thank D. Mabberley from the University of Oxford, for helpful discussions on citrus taxonomy and suggestions on how to improve the paper. We thank T. J. Siebert from Department of Botany and Plant Science, University of California, Riverside, for discussions on citrus-related genera. We also thank M. Sun for the suggestion on how to reconstruct the ancestral distribution analysis; Z.L. Ning and S.H. Zeng from the South China Botanical Garden, Chinese Academy of Sciences; and G.H. Chen from the Bureau of Agriculture and Rural Affairs, Chenzhou for providing the citrus samples. We thank J.L. Ye, D.Y. Guo and L.L. Zhong from the National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University for support on plant growth, metabolics and the bioinformatics platform. This project was supported by the National Key Research and Development Program of China to Q.X. (nos. 2022YFF1003100 and 2018YFD1000101), the National Natural Science Foundation of China to Q.X. (no. 31925034), Major Special Projects and Key R&D Projects in Yunnan province to Q.X. (no. 202102AE090054), the Foundation of Hubei Hongshan Laboratory to Q.X. (no. 2021hszd016), Key Project of Hubei Provincial Natural Science Foundation to Q.X. (no. 2021CFA017) and the National Postdoctoral Program for Innovative Talents (no. BX20200146) to Y.X.

Author information

Authors and Affiliations

Authors

Contributions

Q.X. designed and coordinated the study. Y.H. performed the genomic and transcriptomic analyses. J.H. analyzed the function of PH4. Y.X. managed the plant material and verified the formation of the solo LTRs. W-K.Z. performed the metabolic analysis. Z-S.L., L.W., X.W., S-J.L., Z-H.L. and Z-A.L. performed the experiments and data analysis. S.W., P.C., B.Z., S.Y., X.J., H.Y., J.Y., J.G., X-Y.Z., C-R.L., X-L.Z., Y.-J.G., W-F.Z., Z.X. and Z.M. provided some of the samples. M.S. provided the images of the samples from Australia. Q.X., Y.H., J.H., Y.X. and W.Z. wrote the paper with contributions from C-L.L., R.M.L., W.J., F.Z., R.R.K., M.S., R.M. and X.D.

Corresponding author

Correspondence to Qiang Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Etienne Bucher and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Characteristics of fruit and seed of Citrus-related genera (1–7), early-diverging Citrus (8–10) and three groups of Citrus species (11–25).

1, Murraya paniculata; 2, Atalantia buxifolia; 3, Glycosmis pentaphylla; 4, Bergera koenigii; 5, Clausena lansium; 6, Aegle marmelos; 7, Citropsis gilletiana; 8, Citrus trifoliata; 9, Citrus mangshanensis; 10, Citrus ichangensis; 11, Citrus linwuensis; 12, Citrus reticulata; 13, Citrus aurantium; 14, Citrus sinensis; 15, Citrus hystrix; 16, Citrus hongheensis; 17, Citrus maxima; 18, Citrus medica; 19, Citrus indica; 20, Citrus paradisi; 21, Citrus limon; 22, Citrus polyandra; 23, Citrus australasica; 24, Citrus hindsii; 25, Citrus glauca. Individual pieces of fruit from different pictures were collected and are shown together. Scale bars, 1 cm. Generally, a large number of seeds and the emergence of juice vesicles in the fruits of the early-diverging Citrus species were observed, showing an intermediate form between Citrus-related genera and Citrus species. Scale bars = 1 cm.

Extended Data Fig. 2 Leaf characteristics of Citrus-related genera (1–7), early diverging Citrus (8–10) and three groups of Citrus species (11–21).

1, Murraya paniculata; 2, Glycosmis pentaphylla; 3, Bergera koenigii; 4, Clausena lansium; 5, Aegle marmelos; 6, Atalantia buxifolia; 7, Citropsis gilletiana; 8, Citrus trifoliata; 9, Citrus ichangensis; 10, Citrus mangshanensis; 11, Citrus linwuensis; 12, Citrus reticulata; 13, Citrus aurantium; 14, Citrus hystrix; 15, Citrus medica; 16, Citrus hongheensis; 17, Citrus indica; 18, Citrus sinensis; 19, Citrus hindsii; 20, Citrus australasica; 21, Citrus maxima. The pinnately compound leaf frequently occurs in Citrus-related genera, while simple leaf is popular in Citrus species. The leaves of the early-diverging Citrus (8, 9, 10) represent an intermediate state in the range from the Citrus-related genera to Citrus species. Scale bars = 1 cm.

Extended Data Fig. 3 Characteristics of Citrus linwuensis.

(a) Soft and dasyphyllous leaves and purple young leaves. (b-c) Flowers. (d) Pistils. (e) Longitudinal sections of pistils. (f) Fruit shape (top row), longitudinal section (bottom left) and equatorial cross section (bottom right) of mature fruit. Scale bars = 1 cm.

Extended Data Fig. 4 Characterization of Citrus mangshanensis.

(a) Flowering branches. (b-c) Flower. (d) Pistil. (e) Longitudinal section of a pistil. (f, g) Fruits. (h) Longitudinal and equatorial cross sections of fruits. (i) Morphological characteristics of young seedlings from Citrus mangshanensis, Citrus maxima and their F2 progeny. The germination rate of the seeds from the F1 hybrid progeny is indicated. Scale bars = 1 cm.

Extended Data Fig. 5 Newly found accession of Citrus trifoliata in Yongshun, Hunan Province.

(a) Wild stand of the newly found Citrus trifoliata ‘Yongshun’. (b-c) Longitudinal and equatorial cross sections of fruits and leaves from the newly found Citrus trifoliata ‘Yongshun’. (d) Leaves from common Citrus trifoliata from SCC. (e) Leaves from Citrus trifoliata ‘Fumin’ from Yunnan province. (f) Phylogenetic analysis of the newly found Citrus trifoliata ‘Yongshun’, common Citrus trifoliata from SCC, Citrus trifoliata ‘Fumin’ from Yunnan province and other Citrus species. Bootstrap support values higher than 80 are denoted above the branch. Divergence times are indicated as millions of years ago (MA). Red color indicates deciduous trifoliate orange. Green color indicates evergreen trifoliate orange. In a, scale bars= 1 m. In b-e, scale bars = 1 cm.

Extended Data Table 1 Statistics for assembly and annotation of 12 genomes

Supplementary information

Supplementary Information

Supplementary Notes 1–9 and Figs. 1–36.

Reporting Summary

Peer Review File

Supplementary Table 1

Supplementary Tables 1–21.

Source data

Source Data Fig. 1

Source data of the citric acid content in Fig. 1b.

Source Data Fig. 3

Source data of the pangenome analysis in Figs. 3a,b.

Source Data Fig. 4

Statistic source data for the TEs and expression data in Fig. 4a–f.

Source Data Fig. 4

Unprocessed gels in Fig. 4f.

Source Data Fig. 5

Ratio of differentially expressed genes with SVs in their promoters in Fig. 5a.

Source Data Fig. 6

pH values, citric acid and gene expression values in ph4 mutants and WT in Fig. 6d–f.

Source Data Fig. 7

Gene expression values for citrus and citrus-related genera in Fig. 7a–c. Statistical source data of transactivation activity in Fig. 7g–i.

Source Data Fig. 7

Unprocessed blots in Fig. 7e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., He, J., Xu, Y. et al. Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits. Nat Genet 55, 1964–1975 (2023). https://doi.org/10.1038/s41588-023-01516-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01516-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research