Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

A new method for multiancestry polygenic prediction improves performance across diverse populations

Abstract

Polygenic risk scores (PRSs) increasingly predict complex traits; however, suboptimal performance in non-European populations raise concerns about clinical applications and health inequities. We developed CT-SLEB, a powerful and scalable method to calculate PRSs, using ancestry-specific genome-wide association study summary statistics from multiancestry training samples, integrating clumping and thresholding, empirical Bayes and superlearning. We evaluated CT-SLEB and nine alternative methods with large-scale simulated genome-wide association studies (~19 million common variants) and datasets from 23andMe, Inc., the Global Lipids Genetics Consortium, All of Us and UK Biobank, involving 5.1 million individuals of diverse ancestry, with 1.18 million individuals from four non-European populations across 13 complex traits. Results demonstrated that CT-SLEB significantly improves PRS performance in non-European populations compared with simple alternatives, with comparable or superior performance to a recent, computationally intensive method. Moreover, our simulation studies offered insights into sample size requirements and SNP density effects on multiancestry risk prediction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CT-SLEB workflow.
Fig. 2: Simulation results of various PRS methods in multiancestry settings.
Fig. 3: Comparison of CT-SLEB PRSs across different ancestries with single-ancestry EUR PRSs in the EUR population.
Fig. 4: Prediction performance of CT-SLEB PRS under varying SNP densities.
Fig. 5: Prediction accuracy of PRSs for heart metabolic disease burden and height in 23andMe, Inc. datasets.
Fig. 6: Prediction accuracy of five binary traits in 23andMe, Inc. datasets.
Fig. 7: Prediction accuracy of four blood lipid traits from the GLGC.
Fig. 8: Prediction accuracy of two traits from the AoU dataset.

Similar content being viewed by others

Data availability

Simulated genotype data for 600,000 subjects from 5 ancestries are at: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/COXHAP. GWAS summary level statistics for five ancestries from GLGC are at: http://csg.sph.umich.edu/willer/public/glgc-lipids2021/results/ancestry_specific. GWAS summary statistics for three ancestries are from AoU at: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FAWEQK. The PRSs developed for six traits for GLGC and AoU have been released through the PGS Catalog (https://www.pgscatalog.org) with publication ID PGP000489 and score IDs PGS003767–PGS003848. The 23andMe GWAS summary statistics for the top 10,000 genetic markers associated with 3 traits (height, morning person and SBMN) across 5 diverse ancestries have been made available as Supplementary Data and are also available at: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/3NBNCV. The full GWAS summary statistics and the final PRSs for these three traits (height, morning person and SBMN) are available through 23andMe, Inc. to qualified researchers under an agreement with 23andMe, Inc. that protects the privacy of the 23andMe participants. Please visit research.23andme.com/dataset-access for more information and to apply for access to the data. The summary statistics for the four other traits used in the paper (any CVD, heart metabolic disease burden, depression and migraine) will not be made available because of 23andMe’s business requirements. Participants provided informed consent and participated in the research online, under a protocol approved by the external AAHRPP-accredited institutional review board, Ethical & Independent Review Services.

Code availability

Simulation and data analyses code is available at GitHub (https://github.com/andrewhaoyu/multi_ethnic (ref. 66)). Software implementing CT-SLEB is available at GitHub (https://github.com/andrewhaoyu/CTSLEB (ref. 67)). The P + T method was implemented using R version 4.0.0 in conjunction with PLINK 1.9 available at https://www.cog-genomics.org/plink/1.9. Other methods and their corresponding repositories include: SCT and LDpred2 at https://github.com/privefl/bigsnpr, XPASS at https://github.com/YangLabHKUST/XPASS, PolyPred-S+ at https://github.com/omerwe/polyfun, PRS-CSx at https://github.com/getian107/PRScsx, and LDSC at https://github.com/bulik/ldsc. PLINK: https://www.cog-genomics.org/plink/1.9. Most of our statistical analyses were performed using the following R packages: ggplot2 v.3.3.3, dplyr v.1.0.4, data.table v.1.13.6, bigsnpr v.1.6.1, SuperLearner v.2.0.26, caret v.6.0.86, ranger v.0.12.1, glmnet v.4.1, RISCA v.1.01, XPASS v.0.1.0, xgboost v.1.7.5.1 and randomForest.

References

  1. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

    CAS  PubMed  Google Scholar 

  2. Chatterjee, N., Shi, J. & García-Closas, M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat. Rev. Genet. 17, 392–406 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mavaddat, N. et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am. J. Hum. Genet. 104, 21–34 (2019).

    CAS  PubMed  Google Scholar 

  5. Jia, G. et al. Evaluating the utility of polygenic risk scores in identifying high-risk individuals for eight common cancers. JNCI Cancer Spectr. 4, pkaa021 (2020).

    PubMed  PubMed Central  Google Scholar 

  6. Zhang, H. et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat. Genet. 52, 572–581 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Graff, R. E. et al. Cross-cancer evaluation of polygenic risk scores for 16 cancer types in two large cohorts. Nat. Commun. 12, 970 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 243–250 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Duncan, L. et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun. 10, 3328 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, C. et al. Generalizability of polygenic risk scores for breast cancer among women with European, African, and Latinx ancestry. JAMA Netw. Open 4, e2119084–e2119084 (2021).

    PubMed  PubMed Central  Google Scholar 

  11. Du, Z. et al. Evaluating polygenic risk scores for breast cancer in women of african ancestry. J. Natl Cancer Inst. 113, 1168–1176 (2021).

    PubMed  PubMed Central  Google Scholar 

  12. Wojcik, G. L. et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 570, 514–518 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 100, 635–649 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, Y. et al. Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations. Nat. Commun. 11, 3865 (2020).

    PubMed  PubMed Central  Google Scholar 

  16. Kullo, I. J. et al. Polygenic scores in biomedical research. Nat. Rev. Genet. 23, 524–532 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wray, N. R., Goddard, M. E. & Visscher, P. M. Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res. 17, 1520–1528 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

    CAS  PubMed  Google Scholar 

  19. Vilhjálmsson, B. J. et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet. 97, 576–592 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Privé, F., Vilhjálmsson, B. J., Aschard, H. & Blum, M. G. B. Making the most of clumping and thresholding for polygenic scores. Am. J. Hum. Genet. 105, 1213–1221 (2019).

    PubMed  PubMed Central  Google Scholar 

  21. Lloyd-Jones, L. R. et al. Improved polygenic prediction by Bayesian multiple regression on summary statistics. Nat. Commun. 10, 5086 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. Newcombe, P. J., Nelson, C. P., Samani, N. J. & Dudbridge, F. A flexible and parallelizable approach to genome-wide polygenic risk scores. Genet. Epidemiol. 43, 730–741 (2019).

    PubMed  PubMed Central  Google Scholar 

  23. Ge, T., Chen, C. Y., Ni, Y., Feng, Y. C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Song, S., Jiang, W., Hou, L. & Zhao, H. Leveraging effect size distributions to improve polygenic risk scores derived from summary statistics of genome-wide association studies. PLoS Comput. Biol. 16, e1007565 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou, G. & Zhao, H. A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics. PLoS Genet. 17, e1009697 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger. Bioinformatics 36, 5424–5431 (2021).

    PubMed  Google Scholar 

  27. Koyama, S. et al. Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. Nat. Genet. 52, 1169–1177 (2020).

    CAS  PubMed  Google Scholar 

  28. Sakaue, S. et al. Trans-biobank analysis with 676,000 individuals elucidates the association of polygenic risk scores of complex traits with human lifespan. Nat. Med. 26, 542–548 (2020).

    CAS  PubMed  Google Scholar 

  29. Agbaedeng, T. A. et al. Polygenic risk score and coronary artery disease: a meta-analysis of 979,286 participant data. Atherosclerosis 333, 48–55 (2021).

    CAS  PubMed  Google Scholar 

  30. Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 573–580 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tian, P. et al. Multiethnic polygenic risk prediction in diverse populations through transfer learning. Front. Genet. 13, 1854 (2022).

    Google Scholar 

  32. Márquez-Luna, C. et al. Multiethnic polygenic risk scores improve risk prediction in diverse populations. Genet. Epidemiol. 41, 811–823 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Xiao, J. et al. XPXP: improving polygenic prediction by cross-population and cross-phenotype analysis. Bioinformatics 38, 1947–1955 (2022).

    CAS  PubMed  Google Scholar 

  34. Cai, M. et al. A unified framework for cross-population trait prediction by leveraging the genetic correlation of polygenic traits. Am. J. Hum. Genet. 108, 632–655 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dudbridge, F. & Wray, N. R. Power and predictive sccuracy of polygenic risk scores. PLoS Genet. 9, e1003348 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chatterjee, N. et al. Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies. Nat. Genet. 45, 400–405 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of lipids. Nature 600, 675–679 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Brown, B. C., Ye, C. J., Price, A. L. & Zaitlen, N. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet. 99, 76–88 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi, H. et al. Population-specific causal disease effect sizes in functionally important regions impacted by selection. Nat. Commun. 12, 1098 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. van der Laan, M. J., Polley, E. C. & Hubbard, A. E. Super learner. Stat. Appl. Genet. Mol. Biol. 6, 25 (2007).

    Google Scholar 

  41. Polley, E. & van der Laan, M. J. Super learner in prediction. UC Berkeley Division of Biostatistics Working Paper Series (2010); http://biostats.bepress.com/ucbbiostat/paper266

  42. Ledell, E., Petersen, M. & Van Der Laan, M. J. Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates. Electron J. Stat. 9, 1583–1607 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Polley, E., LeDell, E., Kennedy, C. & van der Laan, M. J. SuperLearner: Super learner prediction. R version 2.0-26 (2019).

  44. Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 58, 267–288 (1996).

    Google Scholar 

  45. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. Ripley, B. D. Pattern Recognition and Neural Networks (Cambridge Univ. Press, 2007).

  47. Weissbrod, O. et al. Leveraging fine-mapping and multipopulation training data to improve cross-population polygenic risk scores. Nat. Genet. 54, 450–458 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat. Genet. 52, 1355–1363 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Consortium, T. I. H. 3. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52 (2010).

    Google Scholar 

  50. Bien, S. A. et al. Strategies for enriching variant coverage in candidate disease Loci on a multiethnic genotyping array. PLoS ONE 11, 167758 (2016).

    Google Scholar 

  51. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    PubMed  Google Scholar 

  52. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, Y., Qi, G., Park, J. H. & Chatterjee, N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits. Nat. Genet. 50, 1318–1326 (2018).

    CAS  PubMed  Google Scholar 

  54. Zhang, Y. D. et al. Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nat. Commun. 11, 3353 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Márquez-Luna, C. et al. Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets. Nat. Commun. 12, 6052 (2021).

    PubMed  PubMed Central  Google Scholar 

  56. Ge, T., Chen, C. Y., Neale, B. M., Sabuncu, M. R. & Smoller, J. W. Phenome-wide heritability analysis of the UK Biobank. PLoS Genet. 13, e1006711 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ~700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ding, Y. et al. Polygenic scoring accuracy varies across the genetic ancestry continuum. Nature 618, 774–781 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Song, L. et al. SummaryAUC: a tool for evaluating the performance of polygenic risk prediction models in validation datasets with only summary level statistics. Bioinformatics 35, 4038–4044 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao, Z. et al. PUMAS: fine-tuning polygenic risk scores with GWAS summary statistics. Genome Biol. 22, 257 (2021).

    PubMed  PubMed Central  Google Scholar 

  61. Pritchard, J. K. & Przeworski, M. Linkage disequilibrium in humans: models and data. Am. J. Hum. Genet. 69, 1–14 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. van der Laan, M. J. & Rose, S. Targeted Learning: Causal inference for observational and experimental data, Vol. 4 (Springer New York, 2011).

  63. Su, Z., Marchini, J. & Donnelly, P. HAPGEN2: simulation of multiple disease SNPs. Bioinformatics 27, 2304–2305 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Foucher, Y. et al. RISCA: Causal inference and prediction in cohort-based analyses. R version 1.01 https://cran.r-project.org/package=RISCA (2020).

  66. Zhang, H., Jin, J. & Zhang, J. Multi-ancestry PRS development. Zenodo https://doi.org/10.5281/zenodo.8033882 (2023).

  67. Zhang, H. & Okuhara, D. CT-SLEB software. Zenodo https://doi.org/10.5281/zenodo.8033795 (2023).

Download references

Acknowledgements

We thank the research participants and employees of 23andMe, Inc. for making this work possible. We thank L. Noblin, M. J. Francis and E. Voeglein for helping with the research collaboration agreement with the Harvard T.H. Chan School of Public Health, Johns Hopkins Bloomberg School of Public Health and 23andMe, Inc. The analysis utilized the high-performance computation Biowulf cluster at the National Institutes of Health (NIH), USA, Faculty of Arts and Sciences Research Computing Cluster at Harvard University and the Joint High Performance Computing Exchange at Johns Hopkins Bloomberg School of Public Health. The UKBB data were obtained under UKBB resource application no. 17712. This work was funded by NIH grants: nos. K99 CA256513 to H.Z., R00 HG012223 to J.J., NHLBI 5T32HL007604-37 to Z.Y., R35-CA197449, U19-CA203654, R01-HL163560, U01-HG009088 and U01-HG012064 to X.L., R01 HG010480-01 to N.C. and U01HG011724 to N.C. The AoU Research Program is supported by the NIH, Office of the Director: Regional Medical Centers: 1 OT2 OD026549; 1 OT2 OD026554; 1 OT2 OD026557; 1 OT2 OD026556; 1 OT2 OD026550; 1 OT2 OD 026552; 1 OT2 OD026553; 1 OT2 OD026548; 1 OT2 OD026551; 1 OT2 OD026555; IAA no.: AOD 16037; Federally Qualified Health Centers: HHSN 263201600085U; Data and Research Center: 5 U2C OD023196; Biobank: 1 U24 OD023121; The Participant Center: U24 OD023176; Participant Technology Systems Center: 1 U24 OD023163; Communications and Engagement: 3 OT2 OD023205; 3 OT2 OD023206; and Community Partners: 1 OT2 OD025277; 3 OT2 OD025315; 1 OT2 OD025337; 1 OT2 OD025276. In addition, the AoU Research Program would not be possible without the partnership of its participants.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

H.Z. and N.C. conceived the project. H.Z., J. Zhan, J.J., J. Zhang, W.L. and R.Z. carried out all data analyses with supervision from N.C. J.Z., J.O.C. and Y.J. ran GWASs for training data from 23andMe Inc. with supervision from B.L.K. R.Z. ran GWASs for training data from AoU with supervision from N.C. and H.Z. H.Z., T.C. and D.O. developed the software and online resources for data sharing. H.Z., J. Zhan, J.J., J. Zhang, W.L., R.Z. and N.C. drafted the manuscript. X.L., M.G.C. and T.U.A. provided comments. All authors reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Haoyu Zhang or Nilanjan Chatterjee.

Ethics declarations

Competing interests

J.Z., J.O., Y.J., S.A., A.A., E.B., R.K.B., J.B., K.B., E.B., D.C., G.C.P., D.D., S.D., S.L.E., N.E., T.F., A.F., K.F.B., P.F., W.F., J.M.G., K.H., A.H., B.H., D.A.H., E.M.J., K.K., A.K., K.H.L., B.A.L., M.L., J.C.M., M.H.M., S.J.M., M.E.M., P.N., D.T.N., E.S.N., A.A.P., G.D.P., A.R., M.S., A.J.S., J.F.S., J.S., S.S., Q.J.S., S.A.T., C.T.T., V.T., J.Y.T., X.W., W.W., C.H.W., P.W., C.D.W. and B.L.K. are employed by and hold stock or stock options in 23andMe, Inc. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Shing Wan Choi, Bjarni Vilhjálmsson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 CT-SLEB detailed flowchart.

The method contains three major steps: 1. Two-dimensional clumping and thresholding; 2. Empirical-Bayes procedure for utilizing genetic correlations of effect sizes across populations; 3. Super-learning model for combining PRSs under different tuning parameters. The tuning dataset is used to train the super learning model. The final prediction performance is evaluated based on an independent validation dataset. For continuous traits, the prediction is evaluated using R2 obtained from the linear regression between outcome and PRS after adjusting for covariates (Methods). For binary traits, the prediction is evaluated using the area under the ROC curve (AUC).

Extended Data Fig. 2 Performance of CT-SLEB with different tuning and validation sample sizes.

The total tuning and validation sample size is set as 2000, 5000, 100,000 and 200,000 with half for tuning and half for validation. Analyses are conducted in the multiancestry setting under a strong negative selection model. The training sample size for the AFR population is 15,000. The training sample size for EUR is 100,000. The sample size for the tuning dataset and validation for each population is fixed at 10,000, respectively. Common SNP heritability is assumed to be 0.4 across all populations and effect-size correlation is assumed to be 0.8 across populations. The causal SNPs proportion is varied across 0.01 (top panel), 0.001 (medium panel), or 5×10−4 (bottom panel). The final prediction R2 is reported as the average of ten independent simulation replicates.

Supplementary information

Supplementary information

Supplementary Figs. 1–22 and Note.

Reporting Summary

Peer Review File

Supplementary Table 1

Supplementary Tables 1–11.

Supplementary Data 1

The 23andMe GWAS summary statistics for the top 10,000 genetic markers associated with three traits (height, morning person and SBMN) across five diverse ancestries.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhan, J., Jin, J. et al. A new method for multiancestry polygenic prediction improves performance across diverse populations. Nat Genet 55, 1757–1768 (2023). https://doi.org/10.1038/s41588-023-01501-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01501-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing