Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

PhenoScore quantifies phenotypic variation for rare genetic diseases by combining facial analysis with other clinical features using a machine-learning framework

Abstract

Several molecular and phenotypic algorithms exist that establish genotype–phenotype correlations, including facial recognition tools. However, no unified framework that investigates both facial data and other phenotypic data directly from individuals exists. We developed PhenoScore: an open-source, artificial intelligence-based phenomics framework, combining facial recognition technology with Human Phenotype Ontology data analysis to quantify phenotypic similarity. Here we show PhenoScore’s ability to recognize distinct phenotypic entities by establishing recognizable phenotypes for 37 of 40 investigated syndromes against clinical features observed in individuals with other neurodevelopmental disorders and show it is an improvement on existing approaches. PhenoScore provides predictions for individuals with variants of unknown significance and enables sophisticated genotype–phenotype studies by testing hypotheses on possible phenotypic (sub)groups. PhenoScore confirmed previously known phenotypic subgroups caused by variants in the same gene for SATB1, SETBP1 and DEAF1 and provides objective clinical evidence for two distinct ADNP-related phenotypes, already established functionally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of PhenoScore.
Fig. 2: PhenoScore for KdVS.
Fig. 3: Generalization of PhenoScore to 40 syndromes.
Fig. 4: Number of individuals needed for training.
Fig. 5: Genotype–phenotype correlations and subgroup detection.

Similar content being viewed by others

Data availability

The used dataset in this study is not publicly available due to both IRB and General Data Protection Regulation (EU GDPR) restrictions because the data might be (partially) traceable. However, access to the data may be requested from the data availability committee by contacting the corresponding authors via e-mail with a research proposal, who will respond within 14 d.

Code availability

The code of PhenoScore version 1.0.0 created during this study is freely available at https://github.com/ldingemans/PhenoScore ref. 83, to enable anyone to apply PhenoScore to their own dataset. Included in PhenoScore are the following two examples: the data for the SATB1 subgroups (positive example) and random data (negative example).

References

  1. Vissers, L. E. L. M. et al. A de novo paradigm for mental retardation. Nat. Genet. 42, 1109–1112 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. de Ligt, J. et al. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367, 1921–1929 (2012).

    Article  PubMed  Google Scholar 

  3. Rauch, A. et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380, 1674–1682 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Gilissen, C. et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 511, 344–347 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Beaumont, R. N. & Wright, C. F. Estimating diagnostic noise in panel-based genomic analysis. Genet. Med. 24, 2042–2050 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. McGuire, A. L. et al. The road ahead in genetics and genomics. Nat. Rev. Genet. 21, 581–596 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 100,000 Genomes Project Pilot Investigators. et al.100,000 genomes pilot on rare-disease diagnosis in health care—preliminary report. N. Engl. J. Med. 385, 1868–1880 (2021).

  10. Neveling, K. et al. Next-generation cytogenetics: comprehensive assessment of 52 hematological malignancy genomes by optical genome mapping. Am. J. Hum. Genet. 108, 1423–1435 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mantere, T. et al. Optical genome mapping enables constitutional chromosomal aberration detection. Am. J. Hum. Genet. 108, 1409–1422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schwarz, J. M., Rödelsperger, C., Schuelke, M. & Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 7, 575–576 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Robinson, P. N. et al. The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am. J. Hum. Genet. 83, 610–615 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leite, A. J. D. C. et al. Diagnostic yield of patients with undiagnosed intellectual disability, global developmental delay and multiples congenital anomalies using karyotype, microarray analysis, whole exome sequencing from Central Brazil. PLoS ONE 17, e0266493 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clift, K. et al. Patients’ views on variants of uncertain significance across indications. J. Community Genet. 11, 139–145 (2020).

    Article  PubMed  Google Scholar 

  19. Makhnoon, S., Garrett, L. T., Burke, W., Bowen, D. J. & Shirts, B. H. Experiences of patients seeking to participate in variant of uncertain significance reclassification research. J. Community Genet. 10, 189–196 (2019).

    Article  PubMed  Google Scholar 

  20. Van Dijk, S. et al. Clinical characteristics affect the impact of an uninformative DNA test result: the course of worry and distress experienced by women who apply for genetic testing for breast cancer. J. Clin. Oncol. 24, 3672–3677 (2006).

    Article  PubMed  Google Scholar 

  21. Murray, M. L., Cerrato, F., Bennett, R. L. & Jarvik, G. P. Follow-up of carriers of BRCA1 and BRCA2 variants of unknown significance: variant reclassification and surgical decisions. Genet. Med. 13, 998–1005 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Hamburg, M. A. & Collins, F. S. The path to personalized medicine. N. Engl. J. Med. 363, 301–304 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Ashley, E. A. Towards precision medicine. Nat. Rev. Genet. 17, 507–522 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Brittain, H. K., Scott, R. & Thomas, E. The rise of the genome and personalised medicine. Clin. Med. 17, 545–551 (2017).

    Article  Google Scholar 

  25. Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. & Aerts, H. J. W. L. Artificial intelligence in radiology. Nat. Rev. Cancer 18, 500–510 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Killock, D. AI outperforms radiologists in mammographic screening. Nat. Rev. Clin. Oncol. 17, 134 (2020).

    Article  PubMed  Google Scholar 

  28. Lu, M. Y. et al. AI-based pathology predicts origins for cancers of unknown primary. Nature 594, 106–110 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Sundaram, L. et al. Predicting the clinical impact of human mutation with deep neural networks. Nat. Genet. 50, 1161–1170 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wick, R. R., Judd, L. M. & Holt, K. E. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 20, 129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Köhler, S. et al. Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am. J. Hum. Genet. 85, 457–464 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Robinson, P. N. et al. Improved exome prioritization of disease genes through cross-species phenotype comparison. Genome Res. 24, 340–348 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zemojtel, T. et al. Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome. Sci. Transl. Med. 6, 252ra123 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Smedley, D. & Robinson, P. N. Phenotype-driven strategies for exome prioritization of human Mendelian disease genes. Genome Med. 7, 81 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Smedley, D. et al. Next-generation diagnostics and disease-gene discovery with the Exomiser. Nat. Protoc. 10, 2004–2015 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hsieh, T.-C. et al. PEDIA: prioritization of exome data by image analysis. Genet. Med. 21, 2807–2814 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Robinson, P. N. et al. Interpretable clinical genomics with a likelihood ratio paradigm. Am. J. Hum. Genet. 107, 403–417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferry, Q. et al. Diagnostically relevant facial gestalt information from ordinary photos. eLife 3, e02020 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dudding-Byth, T. et al. Computer face-matching technology using two-dimensional photographs accurately matches the facial gestalt of unrelated individuals with the same syndromic form of intellectual disability. BMC Biotechnol. 17, 90 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Van der Donk, R. et al. Next-generation phenotyping using computer vision algorithms in rare genomic neurodevelopmental disorders. Genet. Med. 21, 1719–1725 (2019).

    Article  PubMed  Google Scholar 

  42. Gurovich, Y. et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat. Med. 25, 60–64 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Dingemans, A. J. M. et al. Quantitative facial phenotyping for Koolen-de Vries and 22q11.2 deletion syndrome. Eur. J. Hum. Genet. 29, 1418–1423 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hsieh, T.-C. et al. GestaltMatcher facilitates rare disease matching using facial phenotype descriptors. Nat. Genet. 54, 349–357 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Claes, P. et al. Genome-wide mapping of global-to-local genetic effects on human facial shape. Nat. Genet. 50, 414–423 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. White, J. D. et al. Insights into the genetic architecture of the human face. Nat. Genet. 53, 45–53 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Naqvi, S. et al. Shared heritability of human face and brain shape. Nat. Genet. 53, 830–839 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, M. et al. Genetic variants underlying differences in facial morphology in East Asian and European populations. Nat. Genet. 54, 403–411 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Vulto-van Silfhout, A. T. et al. Clinical significance of de novo and inherited copy-number variation. Hum. Mutat. 34, 1679–1687 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Brier, G. W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78, 1–3 (1950).

    Article  Google Scholar 

  51. Koolen, D. A. et al. Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome. Nat. Genet. 44, 639–641 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Zollino, M. et al. Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype. Nat. Genet. 44, 636–638 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Koolen, D. A. et al. The Koolen-de Vries syndrome: a phenotypic comparison of patients with a 17q21.31 microdeletion versus a KANSL1 sequence variant. Eur. J. Hum. Genet. 24, 652–659 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Köhler, S. et al. Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Res. 47, D1018–D1027 (2019).

    Article  PubMed  Google Scholar 

  55. den Hoed, J. et al. Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction. Am. J. Hum. Genet. 108, 346–356 (2021).

    Article  Google Scholar 

  56. Nabais Sá, M. J. et al. De novo and biallelic DEAF1 variants cause a phenotypic spectrum. Genet. Med. 21, 2059–2069 (2019).

    Article  PubMed  Google Scholar 

  57. Hoischen, A. et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat. Genet. 42, 483–485 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Filges, I. et al. Reduced expression by SETBP1 haploinsufficiency causes developmental and expressive language delay indicating a phenotype distinct from Schinzel-Giedion syndrome. J. Med. Genet. 48, 117–122 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Bend, E. G. et al. Gene domain-specific DNA methylation episignatures highlight distinct molecular entities of ADNP syndrome. Clin. Epigenetics 11, 64 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Breen, M. S. et al. Episignatures stratifying Helsmoortel-Van Der Aa syndrome Show modest correlation with phenotype. Am. J. Hum. Genet. 107, 555–563 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jagadeesh, K. A. et al. Phrank measures phenotype sets similarity to greatly improve Mendelian diagnostic disease prioritization. Genet. Med. 21, 464–470 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Lyra Jr, P. C. M. et al. Integration of functional assay data results provides strong evidence for classification of hundreds of BRCA1 variants of uncertain significance. Genet. Med. 23, 306–315 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Frederiksen, J. H., Jensen, S. B., Tümer, Z. & Hansen, T. V. O. Classification of MSH6 variants of uncertain significance using functional assays. Int. J. Mol. Sci. 22, 8627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Caswell, R. C., Gunning, A. C., Owens, M. M., Ellard, S. & Wright, C. F. Assessing the clinical utility of protein structural analysis in genomic variant classification: experiences from a diagnostic laboratory. Genome Med. 14, 77 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dingemans, A. J. M. et al. Human disease genes website series: an international, open and dynamic library for up-to-date clinical information. Am. J. Med. Genet. A 185, 1039–1046 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. McKusick, V. A. Mendelian inheritance in man and its online version, OMIM. Am. J. Hum. Genet. 80, 588–604 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Firth, H. V. et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources. Am. J. Hum. Genet. 84, 524–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Adam, M. P. et al. GeneReviews (Univ. Washington, 2010).

  69. Helsmoortel, C. et al. A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nat. Genet. 46, 380–384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Côté, R. A. & Robboy, S. Progress in medical information management. Systematized nomenclature of medicine (SNOMED). JAMA 243, 756–762 (1980).

    Article  PubMed  Google Scholar 

  71. Karras, T., Laine, S. & Aila, T. A style-based generator architecture for generative adversarial networks. IEEE Trans. Pattern Anal. Mach. Intell. 43, 4217–4228 (2021).

    Article  PubMed  Google Scholar 

  72. Manders, P., Lutomski, J. E., Smit, C., Swinkels, D. W. & Zielhuis, G. A. The Radboud biobank: a central facility for disease-based biobanks to optimise use and distribution of biomaterial for scientific research in the Radboud university medical center, Nijmegen. Open J. Bioresour. 5, 2 (2018).

    Article  Google Scholar 

  73. Parkhi, O. M., Vedaldi, A. & Zisserman, A. Deep face recognition. Proceedings of the British Machine Vision Conference (eds Xianghua X. et al.) 41.1–41.12 (BMVA Press, 2015).

  74. Cao, Q. Shen, L., Xie, W. Parkhi, O. M. & Zisserman, A. VGGFace2: a dataset for recognising faces across pose and age. Proceedings of 13th IEEE International Conference on Automatic Face & Gesture Recognition (F&G) pp. 67–74 (IEEE, 2018).

  75. Dingemans, A. J. M., de Vries, B. B. A., Vissers, L. E. L., van Gerven, M. A. J. & Hinne, M. Comparing facial feature extraction methods in the diagnosis of rare genetic syndromes. Preprint at medRxiv https://doi.org/10.1101/2022.08.26.22279217 (2022).

  76. Resnik, P. Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. J. Artif. Intell. Res. 11, 95–130 (1999).

    Article  Google Scholar 

  77. Pesquita, C. et al. Metrics for GO based protein semantic similarity: a systematic evaluation. BMC Bioinformatics 9, S4 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Arvai, K., Gainullin, V. & Borroto, C. GeneDx/phenopy. Zenodo https://doi.org/10.5281/zenodo.4587231 (2019).

  79. Ribeiro, M. T., Singh, S. & Guestrin, C. ‘Why should I trust you?’ Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and DATA MINIng 1135–1144 (Association for Computing Machinery, 2016).

  80. Ras, G., Xie, N., van Gerven, M. & Doran, D. Explainable deep learning: a field guide for the uninitiated. J. Artif. Intell. Res. 73, 329–396 (2022).

    Article  Google Scholar 

  81. Köhler, S. et al. The human phenotype ontology in 2017. Nucleic Acids Res. 45, D865–D876 (2017).

    Article  PubMed  Google Scholar 

  82. Yuan, X. et al. Evaluation of phenotype-driven gene prioritization methods for Mendelian diseases. Brief. Bioinform. 23, bbac019 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Dingemans, L. ldingemans/PhenoScore: v1.0.0. Zenodo https://doi.org/10.5281/zenodo.7892317 (2023).

Download references

Acknowledgements

We are grateful to all families and clinicians who agreed to participate and provide clinical and genotypic information. R.F.K. acknowledges financial support from the Research Fund of the University of Antwerp (Methusalem-OEC grant GENOMED). The work of G.J.L. is supported by New York State Office for People with Developmental Disabilities (OPWDD) and NIH NIGMS R35-GM-133408. E.E.P. is supported by a National Health and Medical Research Council Investigator Grant (award 2021/GNT2008166). Furthermore, we are grateful to the Dutch Organization for Health Research and Development—ZON-MW grants 912-12-109 (to B.B.A.d.V. and L.E.L.M.V.), Donders Junior researcher grant 2019 (to B.B.A.d.V. and L.E.L.M.V.) and Aspasia grant 015.014.066 (to L.E.L.M.V.). The aims of this study contribute to the Solve-RD project (to L.E.L.M.V.), which has received funding from the European Unions Horizon 2020 research and innovation program under grant agreement 779257. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.J.M.D., M.H., L.E.L.M.V., B.B.A.d.V. and M.A.J.v.G. designed the study. A.J.M.D., K.M.G.T., L.G., J.v.R., N.d.L., J.S.H., R.P., I.J.D., E.d.B., J.d.H., J.v.d.S., S.J., B.W.v.B., N.J., E.E.P., P.M.C., A.T.V.v.S., T.K., D.A.K., F.K., H.V.E., G.J.L., F.S.A., A.R., R.M., D.B., P.J.v.d.S., G.S., L.E.L.M.V. and B.B.A.d.V. collected and curated the data. A.J.M.D. and M.H. performed the formal analyses. L.E.L.M.V. and B.B.A.d.V. acquired the funding. A.J.M.D. and M.H. completed the modeling and investigations. A.J.M.D. developed the software. A.J.M.D., M.H., L.E.L.M.V., B.B.A.d.V. and M.A.J.v.G. wrote the original draft. All authors reviewed and edited the final manuscript.

Corresponding authors

Correspondence to Lisenka E. L. M. Vissers or Bert B. A. de Vries.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Xinran Dong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Benchmarking PhenoScore.

The predictive accuracies of LIRICAL, Phenomizer and PhenoScore [118-120] for every included genetic syndrome are displayed here, except for ACTL6A, since the associated phenotype has no OMIM number and therefore Phenomizer and LIRICAL do not include it in its predictions. For PhenoScore and LIRICAL, to calculate the accuracy, a cut-off value of 0.5 for the predictions was used, while for Phenomizer in this case, 0.05 was chosen. For almost every investigated syndrome, PhenoScore outperforms Phenomizer and LIRICAL.

Extended Data Fig. 2 AUC curves of PhenoScore per genetic syndrome.

The receiver operating characteristic curve of all 40 genetic syndromes included in this study.

Extended Data Fig. 3 UMAP plots of facial feature vectors.

The Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP3) plot for the VGGFace2 vectors of all included genetic syndromes, and for the extra systematic confounder analysis for which the individuals with Koolen-de Vries syndrome seen at other centers were compared to individuals seen at our outpatient clinic. For all plots (except the KANSL1 internal/external plot), the feature vectors of all sampled controls during five iterations and the feature vectors of the included patients were provided as input to UMAP. The classes are not separable in this projected space, which provides evidence that the classification is not based on a systematic confounder.

Extended Data Table 1 List of publications for data collection
Extended Data Table 2 Performance of PhenoScore with other syndromes as control
Extended Data Table 3 Benchmarking PhenoScore
Extended Data Table 4 Subgroup analyses
Extended Data Table 5 Classifying variants of uncertain significance
Extended Data Table 6 PhenoScore with phenotypically similar individuals
Extended Data Table 7 Systematic confounder analysis using Koolen-de Vries syndrome

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dingemans, A.J.M., Hinne, M., Truijen, K.M.G. et al. PhenoScore quantifies phenotypic variation for rare genetic diseases by combining facial analysis with other clinical features using a machine-learning framework. Nat Genet 55, 1598–1607 (2023). https://doi.org/10.1038/s41588-023-01469-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01469-w

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics