Measuring intolerance to mutation in human genetics


In numerous applications, from working with animal models to mapping the genetic basis of human disease susceptibility, knowing whether a single disrupting mutation in a gene is likely to be deleterious is useful. With this goal in mind, a number of measures have been developed to identify genes in which protein-truncating variants (PTVs), or other types of mutations, are absent or kept at very low frequency in large population samples—genes that appear ‘intolerant’ to mutation. One measure in particular, the probability of being loss-of-function intolerant (pLI), has been widely adopted. This measure was designed to classify genes into three categories, null, recessive and haploinsufficient, on the basis of the contrast between observed and expected numbers of PTVs. Such population-genetic approaches can be useful in many applications. As we clarify, however, they reflect the strength of selection acting on heterozygotes and not dominance or haploinsufficiency.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: pLI relates to hs, but not h and s separately.
Fig. 2: Properties of pLI.

Data availability

C++ source code for the simulations of PTV counts and accompanying scripts used for plotting and data analysis are available at


  1. 1.

    Blake, J. A., Bult, C. J., Eppig, J. T., Kadin, J. A. & Richardson, J. E. The Mouse Genome Database genotypes:phenotypes. Nucleic Acids Res. 37, D712–D719 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    Bartha, I., di Iulio, J., Venter, J. C. & Telenti, A. Human gene essentiality. Nat. Rev. Genet. 19, 51–62 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Eilbeck, K., Quinlan, A. & Yandell, M. Settling the score: variant prioritization and Mendelian disease. Nat. Rev. Genet. 18, 599–612 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Huang, N., Lee, I., Marcotte, E. M. & Hurles, M. E. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 6, e1001154 (2010).

    Article  Google Scholar 

  5. 5.

    Raybould, M. C., Birley, A. J. & Hultén, M. Molecular variation of the human elastin (ELN) gene in a normal human population. Ann. Hum. Genet. 59, 149–161 (1995).

    CAS  Article  Google Scholar 

  6. 6.

    Wooster, R. et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 378, 789–792 (1995).

    CAS  Article  Google Scholar 

  7. 7.

    Wagenseil, J. E. et al. The importance of elastin to aortic development in mice. Am. J. Physiol. Heart Circ. Physiol. 299, H257–H264 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Roy, R., Chun, J. & Powell, S. N. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat. Rev. Cancer 12, 68–78 (2011).

    Article  Google Scholar 

  9. 9.

    Simons, Y. B., Bullaughey, K., Hudson, R. R. & Sella, G. A population genetic interpretation of GWAS findings for human quantitative traits. PLoS Biol. 16, e2002985 (2018).

    Article  Google Scholar 

  10. 10.

    Simmons, M. J. & Crow, J. F. Mutations affecting fitness in Drosophila populations. Annu. Rev. Genet. 11, 49–78 (1977).

    CAS  Article  Google Scholar 

  11. 11.

    Keightley, P. D. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics 138, 1315–1322 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Deng, H. W. & Lynch, M. Estimation of deleterious-mutation parameters in natural populations. Genetics 144, 349–360 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Orr, H. A. Fitness and its role in evolutionary genetics. Nat. Rev. Genet. 10, 531–539 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    Mukai, T., Chigusa, S. I., Mettler, L. E. & Crow, J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72, 335–355 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Phadnis, N. & Fry, J. D. Widespread correlations between dominance and homozygous effects of mutations: implications for theories of dominance. Genetics 171, 385–392 (2005).

    CAS  Article  Google Scholar 

  16. 16.

    Agrawal, A. F. & Whitlock, M. C. Inferences about the distribution of dominance drawn from yeast gene knockout data. Genetics 187, 553–566 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    Williamson, S. H. et al. Simultaneous inference of selection and population growth from patterns of variation in the human genome. Proc. Natl Acad. Sci. USA 102, 7882–7887 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    Eyre-Walker, A., Woolfit, M. & Phelps, T. The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics 173, 891–900 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    Boyko, A. R. et al. Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet. 4, e1000083 (2008).

    Article  Google Scholar 

  20. 20.

    Racimo, F. & Schraiber, J. G. Approximation to the distribution of fitness effects across functional categories in human segregating polymorphisms. PLoS Genet. 10, e1004697 (2014).

    Article  Google Scholar 

  21. 21.

    Kim, B. Y., Huber, C. D. & Lohmueller, K. E. Inference of the distribution of selection coefficients for new nonsynonymous mutations using large samples. Genetics 206, 345–361 (2017).

    Article  Google Scholar 

  22. 22.

    Petrovski, S., Wang, Q., Heinzen, E. L., Allen, A. S. & Goldstein, D. B. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 9, e1003709 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Samocha, K. E. et al. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 46, 944–950 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Steinberg, J., Honti, F., Meader, S. & Webber, C. Haploinsufficiency predictions without study bias. Nucleic Acids Res. 43, e101 (2015).

    Article  Google Scholar 

  25. 25.

    Bartha, I. et al. The characteristics of heterozygous protein truncating variants in the human genome. PLOS Comput. Biol. 11, e1004647 (2015).

    Article  Google Scholar 

  26. 26.

    Fadista, J., Oskolkov, N., Hansson, O. & Groop, L. LoFtool: a gene intolerance score based on loss-of-function variants in 60 706 individuals. Bioinformatics 33, 471–474 (2017).

    CAS  PubMed  Google Scholar 

  27. 27.

    Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Blekhman, R. et al. Natural selection on genes that underlie human disease susceptibility. Curr. Biol. 18, 883–889 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    Lelieveld, S. H. et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat. Neurosci. 19, 1194–1196 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Ruderfer, D. M. et al. Patterns of genic intolerance of rare copy number variation in 59,898 human exomes. Nat. Genet. 48, 1107–1111 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Kosmicki, J. A. et al. Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat. Genet. 49, 504–510 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Skraban, C. M. et al. WDR26 haploinsufficiency causes a recognizable syndrome of intellectual disability, seizures, abnormal gait, and distinctive facial features. Am. J. Hum. Genet. 101, 139–148 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Stankiewicz, P. et al. Haploinsufficiency of the chromatin remodeler BPTF causes syndromic developmental and speech delay, postnatal microcephaly, and dysmorphic features. Am. J. Hum. Genet. 101, 503–515 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Nguyen, H. T. et al. Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. Genome Med. 9, 114 (2017).

    Article  Google Scholar 

  35. 35.

    Zarrei, M. et al. De novo and rare inherited copy-number variations in the hemiplegic form of cerebral palsy. Genet. Med. 20, 172–180 (2018).

    Article  Google Scholar 

  36. 36.

    Heyne, H. O. et al. De novo variants in neurodevelopmental disorders with epilepsy. Nat. Genet. 50, 1048–1053 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Zech, M. et al. Haploinsufficiency of KMT2B, encoding the lysine-specific histone methyltransferase 2b, results in early-onset generalized dystonia. Am. J. Hum. Genet. 99, 1377–1387 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Haller, M., Mo, Q., Imamoto, A. & Lamb, D. J. Murine model indicates 22q11.2 signaling adaptor CRKL is a dosage-sensitive regulator of genitourinary development. Proc. Natl Acad. Sci. USA 114, 4981–4986 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Wang, J. et al. MARRVEL: integration of human and model organism genetic resources to facilitate functional annotation of the human genome. Am. J. Hum. Genet. 100, 843–853 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Afzali, B. et al. BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nat. Immunol. 18, 813–823 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Gosalia, N., Economides, A. N., Dewey, F. E. & Balasubramanian, S. MAPPIN: a method for annotating, predicting pathogenicity and mode of inheritance for nonsynonymous variants. Nucleic Acids Res. 45, 10393–10402 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Haldane, J. B. S. A mathematical theory of natural and artificial selection, part V: selection and mutation. Math. Proc. Camb. Philos. Soc. 23, 838–844 (1927).

    Article  Google Scholar 

  43. 43.

    Haldane, J. B. S. The effect of variation of fitness. Am. Nat. 71, 337–349 (1937).

    Article  Google Scholar 

  44. 44.

    Wright, S. The distribution of gene frequencies in populations. Proc. Natl Acad. Sci. USA 23, 307–320 (1937).

    CAS  Article  Google Scholar 

  45. 45.

    Crow, J.F. & Kimura, M. An Introduction to Population Genetics Theory (Harper & Row, 1970).

  46. 46.

    Amorim, C. E. G. et al. The population genetics of human disease: the case of recessive, lethal mutations. PLoS Genet. 13, e1006915 (2017).

    Article  Google Scholar 

  47. 47.

    Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    Weghorn, D. et al. Applicability of the mutation-selection balance model to population genetics of heterozygous protein-truncating variants in humans. Preprint at (2018).

  49. 49.

    Cassa, C. A. et al. Estimating the selective effects of heterozygous protein-truncating variants from human exome data. Nat. Genet. 49, 806–810 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Samocha, K.E. et al. Regional missense constraint improves variant deleteriousness prediction. Preprint at (2017).

  51. 51.

    Havrilla, J. M., Pedersen, B. S., Layer, R. M. & Quinlan, A. R. A map of constrained coding regions in the human genome. Nat. Genet. 51, 88–95 (2018).

    Article  Google Scholar 

  52. 52.

    Piel, F. B. et al. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat. Commun. 1, 104 (2010).

    Article  Google Scholar 

  53. 53.

    Gillespie, J.H. Population Genetics: a Concise Guide (JHU Press, 2004).

  54. 54.

    Clark, A. G. Mutation-selection balance with multiple alleles. Genetica 102-103, 41–47 (1998).

    CAS  Article  Google Scholar 

  55. 55.

    Simons, Y. B., Turchin, M. C., Pritchard, J. K. & Sella, G. The deleterious mutation load is insensitive to recent population history. Nat. Genet. 46, 220–224 (2014).

    CAS  Article  Google Scholar 

  56. 56.

    Charlesworth, B. & Charlesworth, D. Elements of Evolutionary Genetics (W. H. Freeman, 2010).

Download references


We thank A. Chakravarti, G. Coop, M. B. Eisen, M. Hurles, J. K. Pritchard, Y. Shen and members of the laboratories of M. Przeworski and G. Sella for helpful discussions. This work was supported by GM128318 to Z.L.F., GM126787 to J.J.B., GM121372 to M.P. and GM115889 to G.S. We acknowledge computing resources from Columbia University's Shared Research Computing Facility project, which is supported by NIH Research Facility Improvement Grant 1G20RR030893-01, and associated funds from the New York State Empire State Development, Division of Science Technology and Innovation (NYSTAR) contract C090171.

Author information




All authors conceived and designed the project. M.P. and G.S. supervised the study. Z.L.F. performed simulations. H.M., J.J.B. and Z.L.F. led the data analysis. All authors wrote the manuscript and approved the final version.

Corresponding author

Correspondence to Zachary L. Fuller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fuller, Z.L., Berg, J.J., Mostafavi, H. et al. Measuring intolerance to mutation in human genetics. Nat Genet 51, 772–776 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing