Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Simultaneous nanopore profiling of mRNA m6A and pseudouridine reveals translation coordination

Abstract

N6-methyladenosine (m6A) and pseudouridine (Ψ) are the two most abundant modifications in mammalian messenger RNA, but the coordination of their biological functions remains poorly understood. We develop a machine learning-based nanopore direct RNA sequencing method (NanoSPA) that simultaneously analyzes m6A and Ψ in the human transcriptome. Applying NanoSPA to polysome profiling, we reveal opposing transcriptomic co-occurrence of m6A and Ψ and synergistic, hierarchical effects of m6A and Ψ on the polysome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simultaneous analysis of mRNA m6A and Ψ by NanoSPA.
Fig. 2: m6A and Ψ in translation.

Similar content being viewed by others

Data availability

The nanopore sequencing data of this study have been submitted to NCBI GEO (accession no. GSE230936)57. The published nanopore WT samples (replicates 1 and 2) used to validate the m6A model are GSM5467024 and GSM5467025 under GSE180656. The published WT GLORI (GSM6432590, GSM6432591) and eTAM-seq data (GSE211303, GSE211303_hela.polya.wt.ftom.ftop.rep1.deep.hits.txt.gz) are derived from the GEO database. The mESC nanopore (GSM5841801) and miCLIP2 samples (GSE163500) are derived from the GEO database. Human genome (GRCh38.p13) and annotation (gencode.v41.annotation.gff3) and mouse genome (GRCm38.primary_assembly.genome.fa) are derived from the GENCODE database (https://www.gencodegenes.org). GO information is derived from Gene Ontology Resource (http://geneontology.org).

Code availability

The NanoSPA package and tutorials are available on GitHub (https://github.com/sihaohuanguc/NanoSPA)58.

References

  1. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frye, M., Harada, B. T., Behm, M. & He, C. RNA modifications modulate gene expression during development. Science 361, 1346–1349 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jackson, L. A. et al. An mRNA vaccine against SARS-CoV-2 – preliminary report. N. Engl. J. Med. 383, 1920–1931 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Kariko, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Anderson, B. R. et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 38, 5884–5892 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eyler, D. E. et al. Pseudouridinylation of mRNA coding sequences alters translation. Proc. Natl Acad. Sci. USA 116, 23068–23074 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martinez, N. M. et al. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol. Cell 82, 645–659 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297–1305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, H. et al. Accurate detection of m(6)A RNA modifications in native RNA sequences. Nat. Commun. 10, 4079 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lorenz, D. A., Sathe, S., Einstein, J. M. & Yeo, G. W. Direct RNA sequencing enables m(6)A detection in endogenous transcript isoforms at base-specific resolution. RNA 26, 19–28 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang, S. et al. Interferon inducible pseudouridine modification in human mRNA by quantitative nanopore profiling. Genome Biol. 22, 330 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pratanwanich, P. N. et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat. Biotechnol. 39, 1394–1402 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Leger, A. et al. RNA modifications detection by comparative Nanopore direct RNA sequencing. Nat. Commun. 12, 7198 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Begik, O. et al. Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nat. Biotechnol. 39, 1278–1291 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Li, F. et al. Porpoise: a new approach for accurate prediction of RNA pseudouridine sites. Brief. Bioinform. 22, bbab245 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fleming, A. M., Mathewson, N. J., Howpay Manage, S. A. & Burrows, C. J. Nanopore dwell time analysis permits sequencing and conformational assignment of pseudouridine in SARS-CoV-2. ACS Cent. Sci. 7, 1707–1717 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jenjaroenpun, P. et al. Decoding the epitranscriptional landscape from native RNA sequences. Nucleic Acids Res. 49, e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, H., Begik, O. & Novoa, E. M. EpiNano: detection of m(6)A RNA modifications using Oxford Nanopore Direct RNA Sequencing. Methods Mol. Biol. 2298, 31–52 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Gao, Y. et al. Quantitative profiling of N(6)-methyladenosine at single-base resolution in stem-differentiating xylem of Populus trichocarpa using Nanopore direct RNA sequencing. Genome Biol. 22, 22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hassan, D., Acevedo, D., Daulatabad, S. V., Mir, Q. & Janga, S. C. Penguin: a tool for predicting pseudouridine sites in direct RNA nanopore sequencing data. Methods 203, 478–487 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Piechotta, M., Naarmann-de Vries, I. S., Wang, Q., Altmuller, J. & Dieterich, C. RNA modification mapping with JACUSA2. Genome Biol. 23, 115 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramasamy, S. et al. An informatics approach to distinguish RNA modifications in nanopore direct RNA sequencing. Genomics 114, 110372 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Hendra, C. et al. Detection of m6A from direct RNA sequencing using a multiple instance learning framework. Nat. Methods 19, 1590–1598 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, R. et al. Mixed-weight neural bagging for detecting m(6)A modifications in SARS-CoV-2 RNA sequencing. IEEE Trans. Biomed. Eng. 69, 2557–2568 (2022).

    Article  PubMed  Google Scholar 

  25. Qin, H. et al. DENA: training an authentic neural network model using Nanopore sequencing data of Arabidopsis transcripts for detection and quantification of N(6)-methyladenosine on RNA. Genome Biol. 23, 25 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Y., Huang, D., Wei, Z. & Chen, K. Primary sequence-assisted prediction of m(6)A RNA methylation sites from Oxford nanopore direct RNA sequencing data. Methods 203, 62–69 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Ramasamy, S. et al. Chemical probe-based nanopore sequencing to selectively assess the RNA modifications. ACS Chem. Biol. 17, 2704–2709 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Tavakoli, S. et al. Semi-quantitative detection of pseudouridine modifications and type I/II hypermodifications in human mRNAs using direct long-read sequencing. Nat. Commun. 14, 334 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu, F. et al. Identifying RNA modifications by direct RNA sequencing reveals complexity of epitranscriptomic dynamics in rice. Genomics Proteomics Bioinformatics 21, 788–804 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stoiber, M. et al. De novo identification of DNA modifications enabled by genome-guided nanopore signal processing. Preprint at BioRxiv https://doi.org/10.1101/094672 (2017).

  31. Parker, M. T. et al. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m(6)A modification. eLife 9, e49658 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Price, A. M. et al. Direct RNA sequencing reveals m(6)A modifications on adenovirus RNA are necessary for efficient splicing. Nat. Commun. 11, 6016 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu, L. et al. m(6)A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nat. Biotechnol. 40, 1210–1219 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, C. et al. Absolute quantification of single-base m(6)A methylation in the mammalian transcriptome using GLORI. Nat. Biotechnol. 41, 355–366 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Xiao, Y.-L. et al. Transcriptome-wide profiling and quantification of N6-methyladenosine by enzyme-assisted adenosine deamination. Nat. Biotechnol. 41, 993–1003 (2023).

  36. Zhong, Z. D. et al. Systematic comparison of tools used for m(6)A mapping from nanopore direct RNA sequencing. Nat. Commun. 14, 1906 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Safra, M., Nir, R., Farouq, D., Vainberg Slutskin, I. & Schwartz, S. TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code. Genome Res. 27, 393–406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dai, Q. et al. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat. Biotechnol. 41, 344–354 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Borchardt, E. K., Martinez, N. M. & Gilbert, W. V. Regulation and function of RNA pseudouridylation in human cells. Annu. Rev. Genet. 54, 309–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ingolia, N. T., Hussmann, J. A. & Weissman, J. S. Ribosome profiling: global views of translation. Cold Spring Harb. Perspect. Biol. 11, a032698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Choi, J. et al. N 6-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat. Struct. Mol. Biol. 23, 110–115 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, X. et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Meyer, K. D. et al. 5′ UTR m6A promotes cap-independent translation. Cell 163, 999–1010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Svitkin, Y. V. et al. N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density. Nucleic Acids Res. 45, 6023–6036 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    Article  PubMed  Google Scholar 

  46. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  50. McKinney, W. Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference Vol. 445 (eds van der Walt, S. and Millman, J.) 51–56 (Scipy, 2010).

  51. Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. Preprint at https://arxiv.org/abs/1603.04467 (2016).

  52. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  53. Körtel, N. et al. Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning. Nucleic Acids Res. 49, e92 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Frankish, A. et al. Gencode 2021. Nucleic Acids Res. 49, D916–D923 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–D334 (2021).

    Article  Google Scholar 

  57. Huang, S., Wylder, A. & Pan, T. Simultaneous nanopore profiling of mRNA m6A and pseudouridine reveals translation coordination. Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE230936 (2024).

  58. Huang, S., Wylder, A. & Pan, T. NanoSPA. GitHub https://github.com/sihaohuanguc/NanoSPA (2024).

Download references

Acknowledgements

We thank L. Zhang and C. He for providing analysis of m6A-SAC-seq data before publication and D. Pan for contribution to coding. This work was supported by NIH (no. RM1 HG008935 to T.P.).

Author information

Authors and Affiliations

Authors

Contributions

S.H. performed all computational work including NanoSPA pipeline development and sequencing data analysis. A.C.W. performed all experimental work including siRNA knockdown, polysome profiling and nanopore sequencing. S.H. and T.P. conceived the project. S.H., A.C.W. and T.P. designed the experiments and wrote the paper.

Corresponding author

Correspondence to Tao Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Tables 1–4.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Wylder, A.C. & Pan, T. Simultaneous nanopore profiling of mRNA m6A and pseudouridine reveals translation coordination. Nat Biotechnol (2024). https://doi.org/10.1038/s41587-024-02135-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-024-02135-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing