Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

RNA interference in the era of nucleic acid therapeutics

Abstract

Two decades of research on RNA interference (RNAi) have transformed a breakthrough discovery in biology into a robust platform for a new class of medicines that modulate mRNA expression. Here we provide an overview of the trajectory of small-interfering RNA (siRNA) drug development, including the first approval in 2018 of a liver-targeted siRNA interference (RNAi) therapeutic in lipid nanoparticles and subsequent approvals of five more RNAi drugs, which used metabolically stable siRNAs combined with N-acetylgalactosamine ligands for conjugate-based liver delivery. We also consider the remaining challenges in the field, such as delivery to muscle, brain and other extrahepatic organs. Today’s RNAi therapeutics exhibit high specificity, potency and durability, and are transitioning from applications in rare diseases to widespread, chronic conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regulation of gene expression by endogenous non-coding RNAs and exogenous oligonucleotides.
Fig. 2: Timeline of key advances and setbacks in the development of RNAi therapeutics.
Fig. 3: LNP technology, lipid structures and ionizable lipids for siRNA delivery.
Fig. 4: Representative examples of siRNA designs, which advanced into clinical development, and their chemical modifications.

Similar content being viewed by others

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Obbard, D. J., Gordon, K. H., Buck, A. H. & Jiggins, F. M. The evolution of RNAi as a defence against viruses and transposable elements. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 99–115 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Crooke, S. T., Witztum, J. L., Bennett, C. F. & Baker, B. F. RNA-targeted therapeutics. Cell Metab. 27, 714–739 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Dominski, Z. & Kole, R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc. Natl Acad. Sci. USA 90, 8673–8677 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gregory, R. I. et al. Human RISC couples MicroRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–640 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Roberts, T. C. The microRNA machinery. Adv. Exp. Med. Biol. 887, 15–30 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eichhorn, S. W. et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol. Cell 56, 104–115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol. 11, 599–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Brown, C. R. et al. Investigating the pharmacodynamic durability of GalNAc–siRNA conjugates. Nucleic Acids Res. 48, 11827–11844 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bowie, A. G. & Unterholzner, L. Viral evasion and subversion of pattern-recognition receptor signalling. Nat. Rev. Immunol. 8, 911–922 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bumcrot, D., Manoharan, M., Koteliansky, V. & Sah, D. W. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat. Chem. Biol. 2, 711–719 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Titze-de-Almeida, R., David, C. & Titze-de-Almeida, S. S. The race of 10 synthetic RNAi-based drugs to the pharmaceutical market. Pharm. Res. 34, 1339–1363 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Garba, A. O. & Mousa, S. A. Bevasiranib for the treatment of wet, age-related macular degeneration. Ophthalmol. Eye Dis. 2, 75–83 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eisenstein, M. Pharma’s roller-coaster relationship with RNA therapies. Nature 574, S4–S6 (2019).

    Article  ADS  CAS  Google Scholar 

  25. Bailey, A. L. & Cullis, P. R. Modulation of membrane fusion by asymmetric transbilayer distributions of amino lipids. Biochemistry 33, 12573–12580 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Semple, S. C. et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta 1510, 152–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Hafez, I. M., Maurer, N. & Cullis, P. R. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 8, 1188–1196 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Judge, A. D., Bola, G., Lee, A. C. & MacLachlan, I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 13, 494–505 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Akinc, A. et al. Development of lipidoid–siRNA formulations for systemic delivery to the liver. Mol. Ther. 17, 872–879 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. Engl. 51, 8529–8533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cullis, P. R. & Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fitzgerald, K. et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet 383, 60–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Coelho, T. et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 369, 819–829 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1074–1094 (2021).

    Article  ADS  Google Scholar 

  40. Szabó, G. T., Mahiny, A. J. & Vlatkovic, I. COVID-19 mRNA vaccines: platforms and current developments. Mol. Ther. 30, 1850–1868 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 21, 1570–1578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, X. et al. Biodegradable amino-ester nanomaterials for Cas9 mRNA delivery in vitro and in vivo. ACS Appl. Mater. Interfaces 9, 25481–25487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Allerson, C. R. et al. Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J. Med. Chem. 48, 901–904 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Morrissey, D. V. et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 41, 1349–1356 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Butler, J. S. et al. Preclinical evaluation of RNAi as a treatment for transthyretin-mediated amyloidosis. Amyloid 23, 109–118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stockert, R. J., Morell, A. G. & Scheinberg, I. H. Mammalian hepatic lectin. Science 186, 365–366 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Steer, C. J. & Ashwell, G. Studies on a mammalian hepatic binding protein specific for asialoglycoproteins. Evidence for receptor recycling in isolated rat hepatocytes. J. Biol. Chem. 255, 3008–3013 (1980).

    Article  CAS  PubMed  Google Scholar 

  50. Stockert, R. J. et al. Endocytosis of asialoglycoprotein-enzyme conjugates by hepatocytes. Lab Invest. 43, 556–563 (1980).

    CAS  PubMed  Google Scholar 

  51. Schwartz, A. L., Fridovich, S. E. & Lodish, H. F. Kinetics of internalization and recycling of the asialoglycoprotein receptor in a hepatoma cell line. J. Biol. Chem. 257, 4230–4237 (1982).

    Article  CAS  PubMed  Google Scholar 

  52. Rensen, P. C., van Leeuwen, S. H., Sliedregt, L. A., van Berkel, T. J. & Biessen, E. A. Design and synthesis of novel N-acetylgalactosamine-terminated glycolipids for targeting of lipoproteins to the hepatic asialoglycoprotein receptor. J. Med. Chem. 47, 5798–5808 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Huang, X., Leroux, J. C. & Castagner, B. Well-defined multivalent ligands for hepatocytes targeting via asialoglycoprotein receptor. Bioconjug. Chem. 28, 283–295 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Rajeev, K. G. et al. Hepatocyte-specific delivery of siRNAs conjugated to novel non-nucleosidic trivalent N-acetylgalactosamine elicits robust gene silencing in vivo. ChemBioChem 16, 903–908 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Matsuda, S. et al. siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes. ACS Chem. Biol. 10, 1181–1187 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Zimmermann, T. S. et al. Clinical proof of concept for a novel hepatocyte-targeting GalNAc–siRNA conjugate. Mol. Ther. 25, 71–78 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Judge, D. P. et al. Phase 3 multicenter study of revusiran in patients with hereditary transthyretin-mediated (hATTR) amyloidosis with cardiomyopathy (ENDEAVOUR). Cardiovasc. Drugs Ther. 34, 357–370 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nair, J. K. et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc–siRNA conjugates. Nucleic Acids Res. 45, 10969–10977 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Foster, D. J. et al. Advanced siRNA designs further improve in vivo performance of GalNAc–siRNA conjugates. Mol. Ther. 26, 708–717 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Habtemariam, B. A. et al. Single-dose pharmacokinetics and pharmacodynamics of transthyretin targeting N-acetylgalactosamine-small interfering ribonucleic acid conjugate, vutrisiran, in healthy subjects. Clin. Pharmacol. Ther. 109, 372–382 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Ray, K. K. et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med. 376, 1430–1440 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Janas, M. M. et al. Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat. Commun. 9, 723 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  63. Prakash, T. P. et al. Identification of metabolically stable 5′-phosphate analogs that support single-stranded siRNA activity. Nucleic Acids Res. 43, 2993–3011 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Parmar, R. et al. 5′-(E)-Vinylphosphonate: a stable phosphate mimic can improve the RNAi activity of siRNA-GalNAc conjugates. ChemBioChem 17, 985–989 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Brown, K. M. et al. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nat. Biotechnol. 40, 1500–1508 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Janas, M. M. et al. The nonclinical safety profile of GalNAc-conjugated RNAi therapeutics in subacute studies. Toxicol. Pathol. 46, 735–745 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McDougall, R. et al. The nonclinical disposition and pharmacokinetic/pharmacodynamic properties of N-acetylgalactosamine-conjugated small interfering RNA are highly predictable and build confidence in translation to human. Drug Metab. Dispos. 50, 781–797 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Larsson, E., Sander, C. & Marks, D. mRNA turnover rate limits siRNA and microRNA efficacy. Mol. Syst. Biol. 6, 433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Agarwal, S. et al. Pharmacokinetics and pharmacodynamics of the small interfering ribonucleic acid, givosiran, in patients with acute hepatic porphyria. Clin. Pharmacol. Ther. 108, 63–72 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Hu, B. et al. Therapeutic siRNA: state of the art. Signal Transduct. Target. Ther. 5, 101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Springer, A. D. & Dowdy, S. F. GalNAc–siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Acid Ther. 28, 109–118 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kawasaki, A. M. et al. Uniformly modified 2′-deoxy-2′-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J. Med. Chem. 36, 831–841 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Tobin, K. A. Macugen treatment for wet age-related macular degeneration. Insight 31, 11–14 (2006).

    PubMed  Google Scholar 

  74. McKenzie, R. et al. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N. Engl. J. Med. 333, 1099–1105 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Richardson, F. C. et al. An evaluation of the toxicities of 2′-fluorouridine and 2′-fluorocytidine-HCl in F344 rats and woodchucks (Marmota monax). Toxicol. Pathol. 27, 607–617 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Saleh, A. F. et al. 2′-O-(2-methoxyethyl) nucleosides are not phosphorylated or incorporated into the genome of human lymphoblastoid TK6 cells. Toxicol. Sci. 163, 70–78 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Shen, W., Liang, X. H., Sun, H. & Crooke, S. T. 2′-Fluoro-modified phosphorothioate oligonucleotide can cause rapid degradation of P54nrb and PSF. Nucleic Acids Res. 43, 4569–4578 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Janas, M. M. et al. Safety evaluation of 2′-deoxy-2′-fluoro nucleotides in GalNAc–siRNA conjugates. Nucleic Acids Res. 47, 3306–3320 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ray, K. K. et al. Long-term efficacy and safety of inclisiran in patients with high cardiovascular risk and elevated LDL cholesterol (ORION-3): results from the 4-year open-label extension of the ORION-1 trial. Lancet Diabetes Endocrinol. 11, 109–119 (2023).

    Article  CAS  PubMed  Google Scholar 

  80. Vosberg, H. P. & Eckstein, F. Effect of deoxynucleoside phosphorothioates incorporated in DNA on cleavage by restriction enzymes. J. Biol. Chem. 257, 6595–6599 (1982).

    Article  CAS  PubMed  Google Scholar 

  81. Geary, R. S., Yu, R. Z. & Levin, A. A. Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides. Curr. Opin. Investig. Drugs 2, 562–573 (2001).

    CAS  PubMed  Google Scholar 

  82. Burgers, P. M. J. & Eckstein, F. Synthesis of dinucleoside monophosphorothioates via addition of sulphur to phosphite triesters. Tetrahedron Lett. 19, 3835–3838 (1978).

    Article  Google Scholar 

  83. Crooke, S. T., Seth, P. P., Vickers, T. A. & Liang, X. H. The interaction of phosphorothioate-containing RNA targeted drugs with proteins is a critical determinant of the therapeutic effects of these Agents. J. Am. Chem. Soc. 142, 14754–14771 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Frazier, K. S. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist’s perspective. Toxicol. Pathol. 43, 78–89 (2015).

    Article  PubMed  Google Scholar 

  85. Janas, M. M. et al. Exposure to siRNA–GalNAc conjugates in systems of the standard test battery for genotoxicity. Nucleic Acid Ther. 26, 363–371 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Ray, K. K. et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med. 382, 1507–1519 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Valdmanis, P. N. et al. RNA interference-induced hepatotoxicity results from loss of the first synthesized isoform of microRNA-122 in mice. Nat. Med. 22, 557–562 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Zlatev, I. et al. Reversal of siRNA-mediated gene silencing in vivo. Nat. Biotechnol. 36, 509–511 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Jackson, A. L. et al. Widespread siRNA ‘off-target’ transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179–1187 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Birmingham, A. et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods 3, 199–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Bramsen, J. B. et al. A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects. Nucleic Acids Res. 38, 5761–5773 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vaish, N. et al. Improved specificity of gene silencing by siRNAs containing unlocked nucleobase analogs. Nucleic Acids Res. 39, 1823–1832 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Schlegel, M. K. et al. From bench to bedside: improving the clinical safety of GalNAc–siRNA conjugates using seed-pairing destabilization. Nucleic Acids Res. 50, 6656–6670 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gane, E. et al. Evaluation of RNAi therapeutics VIR-2218 and ALN-HBV for chronic hepatitis B: results from randomized clinical trials. J. Hepatol. 79, 924–932 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Zhang, M. M., Bahal, R., Rasmussen, T. P., Manautou, J. E. & Zhong, X. B. The growth of siRNA-based therapeutics: updated clinical studies. Biochem. Pharmacol. 189, 114432 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Grimm, D. Asymmetry in siRNA design. Gene Ther. 16, 827–829 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Biscans, A. et al. The chemical structure and phosphorothioate content of hydrophobically modified siRNAs impact extrahepatic distribution and efficacy. Nucleic Acids Res. 48, 7665–7680 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim, D. H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. Biotechnol. 23, 222–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Zhang, X., Goel, V. & Robbie, G. J. Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis. J. Clin. Pharmacol. 60, 573–585 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Setten, R. L., Rossi, J. J. & Han, S. P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 18, 421–446 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Bangalore, S., Breazna, A., DeMicco, D. A., Wun, C.-C. & Messerli, F. H. Visit-to-visit low-density lipoprotein cholesterol variability and risk of cardiovascular outcomes. J. Am. Coll. Cardiol. 65, 1539–1548 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Fields, T. R. The challenges of approaching and managing gout. Rheum. Dis. Clin. North Am. 45, 145–157 (2019).

    Article  PubMed  Google Scholar 

  105. Flack, J. M. Epidemiology and unmet needs in hypertension. J. Manag. Care Pharm. 13, 2–8 (2007).

    PubMed  Google Scholar 

  106. Ceral, J. et al. Difficult-to-control arterial hypertension or uncooperative patients? The assessment of serum antihypertensive drug levels to differentiate non-responsiveness from non-adherence to recommended therapy. Hypertens. Res. 34, 87–90 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Tomaszewski, M. et al. High rates of non-adherence to antihypertensive treatment revealed by high-performance liquid chromatography-tandem mass spectrometry (HP LC–MS/MS) urine analysis. Heart 100, 855–861 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Nelson, M. R. Moving the goalposts for blood pressure—time to act. N. Engl. J. Med. 385, 1328–1329 (2021).

    Article  PubMed  Google Scholar 

  109. Balakrishnan, K. N. et al. Multiple gene targeting siRNAs for down regulation of Immediate Early-2 (Ie2) and DNA polymerase genes mediated inhibition of novel rat cytomegalovirus (strain All-03). Virol. J. 17, 164 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Alterman, J. F. et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat. Biotechnol. 37, 884–894 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chernikov, I. V., Vlassov, V. V. & Chernolovskaya, E. L. Current development of siRNA bioconjugates: from research to the clinic. Front. Pharmacol. 10, 444 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bellenguez, C. et al. A robust clustering algorithm for identifying problematic samples in genome-wide association studies. Bioinformatics 28, 134–135 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Jonsson, T. et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488, 96–99 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  115. Helgadottir, A. et al. Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease. Nat. Genet. 48, 634–639 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 12, 581–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. King, E. A., Davis, J. W. & Degner, J. F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 15, e1008489 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Szustakowski, J. D. et al. Advancing human genetics research and drug discovery through exome sequencing of the UK Biobank. Nat. Genet. 53, 942–948 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Nguyen, P. A., Born, D. A., Deaton, A. M., Nioi, P. & Ward, L. D. Phenotypes associated with genes encoding drug targets are predictive of clinical trial side effects. Nat. Commun. 10, 1579 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  121. Diogo, D. et al. Phenome-wide association studies across large population cohorts support drug target validation. Nat. Commun. 9, 4285 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  122. Minikel, E. V. et al. Evaluating drug targets through human loss-of-function genetic variation. Nature 581, 459–464 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Khan, F. A. et al. CRISPR/Cas9 therapeutics: a cure for cancer and other genetic diseases. Oncotarget 7, 52541–52552 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Herrera-Carrillo, E., Gao, Z. & Berkhout, B. CRISPR therapy towards an HIV cure. Brief. Funct. Genomics 19, 201–208 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Wittrup, A. & Lieberman, J. Knocking down disease: a progress report on siRNA therapeutics. Nat. Rev. Genet. 16, 543–552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Egeberg, O. Thrombophilia caused by inheritable deficiency of blood antithrombin. Scand. J. Clin. Lab. Invest. 17, 92 (1965).

    Article  CAS  PubMed  Google Scholar 

  128. Pasi, K. J. et al. Targeting of antithrombin in hemophilia A or B with RNAi therapy. N. Engl. J. Med. 377, 819–828 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Fitzgerald, K. et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med. 376, 41–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Wong, C. H., Siah, K. W. & Lo, A. W. Estimation of clinical trial success rates and related parameters. Biostatistics 20, 273–286 (2019).

    Article  MathSciNet  PubMed  Google Scholar 

  131. Chan, A. et al. Preclinical development of a subcutaneous ALAS1 RNAi therapeutic for treatment of hepatic porphyrias using circulating RNA quantification. Mol. Ther. Nucleic Acids 4, e263 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Balwani, M. et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med. 382, 2289–2301 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Garrelfs, S. F. et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N. Engl. J. Med. 384, 1216–1226 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Wright, R. S. et al. Pooled patient-level analysis of inclisiran trials in patients with familial hypercholesterolemia or atherosclerosis. J. Am. Coll. Cardiol. 77, 1182–1193 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Adams, D. et al. Efficacy and safety of vutrisiran for patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: a randomized clinical trial. Amyloid 30, 1–9 (2023).

    Article  PubMed  Google Scholar 

  136. Zhu, Y. et al. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 13, 644 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Singh, R. N. & Singh, N. N. Mechanism of splicing regulation of spinal muscular atrophy genes. Adv. Neurobiol. 20, 31–61 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ackermann, E. J. et al. Suppressing transthyretin production in mice, monkeys and humans using 2nd-generation antisense oligonucleotides. Amyloid 23, 148–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Napoli, C., Lemieux, C. & Jorgensen, R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 2, 279–289 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the many contributors at Alnylam and other colleagues in the field who have contributed to the advancement of oligonucleotide therapeutics over the past several decades. We offer special thanks to T. Auperin for his tremendous support during the writing and editing of this manuscript. We also acknowledge the medical writing services provided by E. Childs and colleagues of Adelphi Communications (Macclesfield, UK), in accordance with Good Publication Practice guidelines, funded by Alnylam Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Contributions

V.J., A.V., K.F. and M.A.M. outlined and wrote the manuscript.

Corresponding authors

Correspondence to Vasant Jadhav or Martin A. Maier.

Ethics declarations

Competing interests

All authors are or have been employees of Alnylam Pharmaceuticals during the writing of the manuscript and report ownership of equity in Alnylam Pharmaceuticals: V.J. is chief technology officer; A.V. is chief innovation officer; K.F. is chief scientific officer; and M.A.M. is senior vice-president, head of oncology.

Peer review

Peer review information

Nature Biotechnology thanks Arthur Krieg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, V., Vaishnaw, A., Fitzgerald, K. et al. RNA interference in the era of nucleic acid therapeutics. Nat Biotechnol 42, 394–405 (2024). https://doi.org/10.1038/s41587-023-02105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-023-02105-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research