Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Slow release of a synthetic auxin induces formation of adventitious roots in recalcitrant woody plants

Abstract

Clonal propagation of plants by induction of adventitious roots (ARs) from stem cuttings is a requisite step in breeding programs. A major barrier exists for propagating valuable plants that naturally have low capacity to form ARs. Due to the central role of auxin in organogenesis, indole-3-butyric acid is often used as part of commercial rooting mixtures, yet many recalcitrant plants do not form ARs in response to this treatment. Here we describe the synthesis and screening of a focused library of synthetic auxin conjugates in Eucalyptus grandis cuttings and identify 4-chlorophenoxyacetic acid–l-tryptophan-OMe as a competent enhancer of adventitious rooting in a number of recalcitrant woody plants, including apple and argan. Comprehensive metabolic and functional analyses reveal that this activity is engendered by prolonged auxin signaling due to initial fast uptake and slow release and clearance of the free auxin 4-chlorophenoxyacetic acid. This work highlights the utility of a slow-release strategy for bioactive compounds for more effective plant growth regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A chemical screen for rooting enhancers of difficult-to-root cuttings highlighted 4-CPA-Trp-OMe (1q).
Fig. 2: The 1q combines high penetration with slow 4-CPA release to facilitate prolonged auxin signaling.
Fig. 3: Bypassing key auxin homeostasis regulators supports 4-CPA long-term signaling.
Fig. 4: Hydrolysis of 1r to 4-CPA is enzymatically regulated in E.grandis and Arabidopsis.
Fig. 5: Structural conservation of ILR1 ligand-binding pocket contributes to 4-CPA release.
Fig. 6: 1q is a robust rooting enhancer for woody cuttings.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information. RNA sequencing data associated with this work is available at BioProject accession PRJNA1029024 (manuscript refs. 90,130). Source data are provided with this paper.

References

  1. Verstraeten, I., Schotte, S. & Geelen, D. Hypocotyl adventitious root organogenesis differs from lateral root development. Front. Plant Sci. 5, 495 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hartmann, H. T., Kester, D. E., Davis, F. T., Geneve, R. L. & Wilson, S. B. Hartmann & Kester’s Plant Propagation: Principles and Practices (Pearson, 2017).

  3. Poethig, R. S. Phase change and the regulation of shoot morphogenesis in plants. Science 250, 923–930 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Pijut, P. M., Woeste, K. E. & Michler, C. H. Promotion of adventitious root formation of difficult-to-root hardwood tree species. Hortic. Rev. 38, 213 (2011).

    CAS  Google Scholar 

  5. Hackett, W. P. Juvenility, maturation, and rejuvenation in woody plants. Hortic. Rev. 7, 109–154 (2011).

    Google Scholar 

  6. Wilcox, J. R. & Farmer, R. E. Heritability and C effects in early root growth of eastern cottonwood cuttings. Heredity 23, 239–245 (1968).

    Article  Google Scholar 

  7. Grattapaglia, D., Bertolucci, F. L. & Sederoff, R. R. Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and E. urophylla using a pseudo-testcross strategy and RAPD markers. Theor. Appl. Genet. 90, 933–947 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Visser, E. J. W., Cohen, J. D., Barendse, G. W. M., Blom, C. W. P. M. & Voesenek, L. A. C. J. An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm. Plant Physiol. 112, 1687–1692 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sorin, C. et al. Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17, 1343–1359 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bellini, C., Pacurar, D. I. & Perrone, I. Adventitious roots and lateral roots: similarities and differences. Annu. Rev. Plant Biol. 65, 639–666 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Pacurar, D. I., Perrone, I. & Bellini, C. Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiol. Plant. 151, 83–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Caboni, E. et al. Biochemical aspects of almond microcuttings related to in vitro rooting ability. Biol. Plant. 39, 91–97 (1997).

    Article  CAS  Google Scholar 

  13. Lakehal, A. et al. A molecular framework for the control of adventitious rooting by TIR1/AFB2-Aux/IAA-dependent auxin signaling in Arabidopsis. Mol. Plant 12, 1499–1514 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Bellamine, J., Penel, C., Greppin, H. & Gaspar, T. Confirmation of the role of auxin and calcium in the late phases of adventitious root formation. Plant Growth Regul. 26, 191–194 (1998).

    Article  CAS  Google Scholar 

  15. Blažková, A. et al. Auxin metabolism and rooting in young and mature clones of Sequoia sempervirens. Physiol. Plant. 99, 73–80 (1997).

    Article  Google Scholar 

  16. Rasmussen, A., Hosseini, S. A., Hajirezaei, M.-R., Druege, U. & Geelen, D. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis. J. Exp. Bot. 66, 1437–1452 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Abu-Abied, M. et al. Microarray analysis revealed upregulation of nitrate reductase in juvenile cuttings of Eucalyptus grandis, which correlated with increased nitric oxide production and adventitious root formation. Plant J. 71, 787–799 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Abarca, D. et al. The GRAS gene family in pine: transcript expression patterns associated with the maturation-related decline of competence to form adventitious roots. BMC Plant Biol. 14, 354 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fahn, A. Plant Anatomy (Pergamon, 1990).

  20. Uggla, C., Moritz, T., Sandberg, G. & Sundberg, B. Auxin as a positional signal in pattern formation in plants. Proc. Natl Acad. Sci. USA 93, 9282–9286 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tuominen, H., Puech, L., Fink, S. & Sundberg, B. A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol. 115, 577–585 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ballester, A., San-José, M. C., Vidal, N., Fernández-Lorenzo, J. L. & Vieitez, A. M. Anatomical and biochemical events during in vitro rooting of microcuttings from juvenile and mature phases of chestnut. Ann. Bot. 83, 619–629 (1999).

    Article  CAS  Google Scholar 

  23. Vidal, N., Arellano, G., San-José, M. C., Vieitez, A. M. & Ballester, A. Developmental stages during the rooting of in-vitro-cultured Quercus robur shoots from material of juvenile and mature origin. Tree Physiol. 23, 1247–1254 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Legué, V., Rigal, A. & Bhalerao, R. P. Adventitious root formation in tree species: involvement of transcription factors. Physiol. Plant. 151, 192–198 (2014).

    Article  PubMed  Google Scholar 

  25. Ranjan, A. et al. Molecular basis of differential adventitious rooting competence in poplar genotypes. J. Exp. Bot. 73, 4046–4064 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Díaz-Sala, C. Direct reprogramming of adult somatic cells toward adventitious root formation in forest tree species: the effect of the juvenile–adult transition. Front. Plant Sci. 5, 310 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Solé, A. et al. Characterization and expression of a Pinus radiata putative ortholog to the Arabidopsis SHORT-ROOT gene. Tree Physiol. 28, 1629–1639 (2008).

    Article  PubMed  Google Scholar 

  28. Abu-Abied, M. et al. Gene expression profiling in juvenile and mature cuttings of Eucalyptus grandis reveals the importance of microtubule remodeling during adventitious root formation. BMC Genom. 15, 826 (2014).

    Article  Google Scholar 

  29. de Almeida, M. R. et al. Reference gene selection for quantitative reverse transcription–polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill. BMC Mol. Biol. 11, 73 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. de Almeida, M. R. et al. Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in Eucalyptus. Plant Sci. 239, 155–165 (2015).

    Article  PubMed  Google Scholar 

  31. Ruedell, C. M., de Almeida, M. R. & Fett-Neto, A. G. Concerted transcription of auxin and carbohydrate homeostasis-related genes underlies improved adventitious rooting of microcuttings derived from far-red treated Eucalyptus globulus Labill mother plants. Plant Physiol. Biochem. 97, 11–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Cooper, W. C. Hormones in relation to root formation on stem cuttings. Plant Physiol. 10, 789 (1935).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oinam, G., Yeung, E., Kurepin, L., Haslam, T. & Lopez-Villalobos, A. Adventitious root formation in ornamental plants: I. General overview and recent successes. Propag. Ornam. Plants 11, 78–90 (2011).

    Google Scholar 

  34. Epstein, E. & Ludwig-Müller, J. Indole-3-butyric acid in plants: occurrence, synthesis, metabolism and transport. Physiol. Plant 88, 382–389 (1993).

    Article  CAS  Google Scholar 

  35. Strader, L. C. & Bartel, B. Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol. Plant 4, 477–486 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wiesman, Z., Riov, J. & Epstein, E. Comparison of movement and metabolism of indole‐3‐acetic acid and indole‐3‐butyric acid in mung bean cuttings. Physiol. Plant 74, 556–560 (1988).

    Article  CAS  Google Scholar 

  37. Felker, P. & Clark, P. R. Rooting of mesquite (Prosopis) cuttings. J. Range Manag. 34, 466–468 (1981).

    Article  CAS  Google Scholar 

  38. Van der Krieken, W. M. et al. in Biology of Root Formation and Development (eds Altman, Q. & Waisel, Y.) 95–104 (Springer, 1997).

  39. Mihaljevic, S. & Salopek-Sondi, B. Alanine conjugate of indole-3-butyric acid improves rooting of highbush blueberries. Plant Soil Environ. 58, 236–241 (2012).

    Article  CAS  Google Scholar 

  40. Haissig, B. E. Influence of aryl esters of indole-3-acetic and indole-3-butyric acids on adventitious root primordium initiation and development. Physiol. Plant 47, 29–33 (1979).

    Article  CAS  Google Scholar 

  41. Pizarro, A. & Díaz-Sala, C. Cellular dynamics during maturation-related decline of adventitious root formation in forest tree species. Physiol. Plant 165, 73–80 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Vilasboa, J., da Costa, C. T. & Fett-Neto, A. G. Rooting of eucalypt cuttings as a problem-solving oriented model in plant biology. Prog. Biophys. Mol. Biol. 146, 85–97 (2019).

    Article  PubMed  Google Scholar 

  43. Quareshy, M., Prusinska, J., Li, J. & Napier, R. A cheminformatics review of auxins as herbicides. J. Exp. Bot. 69, 265–275 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Eyer, L. et al. 2,4-D and IAA amino acid conjugates show distinct metabolism in Arabidopsis. PLoS ONE 11, e0159269 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yang, Y., Hammes, U. Z., Taylor, C. G., Schachtman, D. P. & Nielsen, E. High-affinity auxin transport by the AUX1 influx carrier protein. Curr. Biol. 16, 1123–1127 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Hoyerova, K. et al. Auxin molecular field maps define AUX1 selectivity: many auxin herbicides are not substrates. New Phytol. 217, 1625–1639 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Calderón Villalobos, L. I. A. et al. A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin. Nat. Chem. Biol. 8, 477–485 (2012).

    Article  PubMed  Google Scholar 

  48. Lee, S. et al. Defining binding efficiency and specificity of auxins for SCFTIR1/AFB-Aux/IAA co-receptor complex formation. ACS Chem. Biol. 9, 673–682 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Vain, T. et al. Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development. Proc. Natl Acad. Sci. USA 116, 6463–6472 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pufky, J., Qiu, Y., Rao, M. V., Hurban, P. & Jones, A. M. The auxin-induced transcriptome for etiolated Arabidopsis seedlings using a structure/function approach. Funct. Integr. Genom 3, 135–143 (2003).

    Article  CAS  Google Scholar 

  51. Delargy, J. A. & Wright, C. E. Root formation in cuttings of apple in relation to auxin application and to etiolation. New Phytol. 82, 341–347 (1979).

    Article  CAS  Google Scholar 

  52. Verstraeten, I., Beeckman, T. & Geelen, D. in Plant Organogenesis (ed Ive De Smet) 159–175 (Springer, 2013).

  53. Grossmann, K. Auxin herbicides: current status of mechanism and mode of action. Pest Manag. Sci. 66, 113–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Ludwig-Müller, J., Vertocnik, A. & Town, C. D. Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J. Exp. Bot. 56, 2095–2105 (2005).

    Article  PubMed  Google Scholar 

  55. Blythe, E. K., Sibley, J. L., Tilt, K. M. & Ruter, J. M. Methods of auxin application in cutting propagation: a review of 70 years of scientific discovery and commercial practice. J. Environ. Hortic 25, 166–185 (2007).

    Article  CAS  Google Scholar 

  56. Riov, J. et al. Improved method for vegetative propagation of mature Pinus halepensis and its hybrids by cuttings. Isr. J. Plant Sci. 67, 5–15 (2020).

    Article  Google Scholar 

  57. Eliasson, L. & Areblad, K. Auxin effects on rooting in pea cuttings. Physiol. Plant 61, 293–297 (1984).

    Article  CAS  Google Scholar 

  58. Wain, R. L., Wightman, F. & Russell, E. J. The growth-regulating activity of certain ω-substituted alkyl carboxylic acids in relation to their β-oxidation within the plant. Proc. R. Soc. Lond. B 142, 525–536 (1954).

    Article  CAS  PubMed  Google Scholar 

  59. Behrens, R. & Howard Morton, L. Some factors influencing activity of 12 phenoxy acids on mesquite root inhibition. Plant Physiol. 38, 165–170 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zimmerman, P. W. Several chemical growth substances which cause initiation of roots and other responses in plants. Contrib. Boyce Thompson Inst. 7, 209–229 (1935).

    CAS  Google Scholar 

  61. Katekar, G. F. Auxins: on the nature of the receptor site and molecular requirements for auxin activity. Phytochemistry 18, 223–233 (1979).

    Article  CAS  Google Scholar 

  62. Kepinski, S. & Leyser, O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446–451 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Dharmasiri, N., Dharmasiri, S. & Estelle, M. The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Xuan, W., Opdenacker, D., Vanneste, S. & Beeckman, T. in Root Development (eds Ristova, D. & Barbez, E.) 177–190 (Springer, 2018).

  65. Ung, K. L. et al. Structures and mechanism of the plant PIN-FORMED auxin transporter. Nature 609, 605–610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bainbridge, K. et al. Auxin influx carriers stabilize phyllotactic patterning. Genes Dev. 22, 810–823 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Casanova-Sáez, R. et al. Inactivation of the entire Arabidopsis group II GH3s confers tolerance to salinity and water deficit. New Phytol. 235, 263–275 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hayashi, K. et al. The main oxidative inactivation pathway of the plant hormone auxin. Nat. Commun. 12, 1–11 (2021).

    Article  Google Scholar 

  69. Bartel, B. & Fink, G. R. ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 268, 1745–1748 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Davies, R. T., Goetz, D. H., Lasswell, J., Anderson, M. N. & Bartel, B. IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell 11, 365–376 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. LeClere, S., Tellez, R., Rampey, R. A., Matsuda, S. P. T. & Bartel, B. Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J. Biol. Chem. 277, 20446–20452 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Campanella, J. J., Olajide, A. F., Magnus, V. & Ludwig-Muller, J. A novel auxin conjugate hydrolase from wheat with substrate specificity for longer side-chain auxin amide conjugates. Plant Physiol. 135, 2230–2240 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rampey, R. A. et al. A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiol. 135, 978–988 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bitto, E. et al. X‐ray structure of ILL2, an auxin‐conjugate amidohydrolase from Arabidopsis thaliana. Proteins 74, 61–71 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Valentini, R., Mugnozza, G. S., Giordano, E. & Kuzminsky, E. Influence of cold hardening on water relations of three Eucalyptus species. Tree Physiol. 6, 1–10 (1990).

    Article  CAS  PubMed  Google Scholar 

  77. Eliyahu, A. et al. Vegetative propagation of elite Eucalyptus clones as food source for honeybees (Apis mellifera); adventitious roots versus callus formation. Isr. J. Plant Sci. 67, 83–97 (2020).

    Article  Google Scholar 

  78. Robinson, T. L. et al. Performance of Cornell-Geneva rootstocks across North America in multi-location NC-140 rootstock trials. In Proc. 1st International Symposium on Rootstocks for Deciduous Fruit Tree Species 241–245 (ISHS, 2004).

  79. Marini, R. P. et al. Performance of ‘golden delicious’ apple on 23 rootstocks at 12 locations: a five-year summary of the 2003 nc-140 dwarf rootstock trial. J. Am. Pomol. Soc. 63, 115 (2009).

    Google Scholar 

  80. Marini, R. P. et al. Performance of ‘golden delicious’ apple on 23 rootstocks at eight locations: a ten-year summary of the 2003 NC-140 dwarf rootstock trial. J. Am. Pomol. Soc. 68, 54–68 (2014).

    Google Scholar 

  81. Tzeela, P. et al. Comparing adventitious root-formation and graft-unification abilities in clones of Argania spinosa. Front. Plant Sci. 13, 1002703 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ruberv, P. H. & Sheldrake, A. R. Effect of pH and surface charge on cell uptake of auxin. Nat. New Biol. 244, 285–288 (1973).

    Article  Google Scholar 

  83. Sanchez Carranza, A. P. et al. Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum. Sci. Rep. 6, 24212 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Staswick, P. E. et al. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17, 616–627 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hagen, G. & Guilfoyle, T. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol. Biol. 49, 373–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Wabnik, K., Govaerts, W., Friml, J. & Kleine-Vehn, J. Feedback models for polarized auxin transport: an emerging trend. Mol. Biosyst. 7, 2352–2359 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Hudson, J. P. Propagation of plants by root cuttings: II. Seasonal fluctuation of capacity to regenerate from roots. J. Hortic. Sci. 30, 242–251 (1955).

    Article  Google Scholar 

  88. Ohkouchi, T. & Tsuji, K. Basic technology and recent trends in agricultural formulation and application technology. J. Pest Sci. 47, 155–171 (2022).

    Article  CAS  Google Scholar 

  89. Skůpa, P., Opatrný, Z. & Petrášek, J. in Applied Plant Cell Biology (eds Nick, P. & Opatrny, Z.) 69–102 (Springer, 2014).

  90. Kessel, A. & Ben-Tal, N. Free energy determinants of peptide association with lipid bilayers. Curr. Top. Membr. 52, 205–253 (2002).

    Article  CAS  Google Scholar 

  91. Ridoutt, B. G., Pharis, R. P. & Sands, R. Identification and quantification of cambial region hormones of Eucalyptus globulus. Plant Cell Physiol. 36, 1143–1147 (1995).

    Article  CAS  Google Scholar 

  92. Foucart, C. et al. Transcript profiling of a xylem vs phloem cDNA subtractive library identifies new genes expressed during xylogenesis in Eucalyptus. New Phytol. 170, 739–752 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. FastX-Toolkit. Hannon Lab (2012) http://hannonlab.cshl.edu/fastx_toolkit/index.html

  94. Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, 1–13 (2013).

    Article  Google Scholar 

  96. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Article  Google Scholar 

  98. Moura, J. C. M. S. et al. Validation of reference genes from Eucalyptus spp. under different stress conditions. BMC Res. Notes 5, 634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Bennett, M. J. et al. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273, 948–950 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Moreno-Risueno, M. A. et al. Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329, 1306–1311 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Heisler, M. G. et al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15, 1899–1911 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. LeClere, S., Tellez, R., Rampey, R. A., Matsuda, S. P. T. & Bartel, B. Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J. Biol. Chem. 277, 20446–20452 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Sela, I., Ashkenazy, H., Katoh, K. & Pupko, T. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 43, W7–W14 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yu, G., Smith, D. K., Zhu, H. & Guan, Y. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Article  Google Scholar 

  108. Wang, L.-G. et al. Treeio: an R package for phylogenetic tree input and output with richly annotated and associated data. Mol. Biol. Evol. 37, 599–603 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 47, W171–W174 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. G. & Kamoun, S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691–693 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Weber, E., Engler, C., Gruetzner, R., Werner, S. & Marillonnet, S. A modular cloning system for standardized assembly of multigene constructs. PLoS ONE 6, e16765 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Grützner, R. et al. High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns. Plant Commun. 2, 100135 (2021).

    Article  PubMed  Google Scholar 

  113. Karimi, M., Inzé, D. & Depicker, A. GATEWAYTM vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, X., Henriques, R., Lin, S.-S., Niu, Q.-W. & Chua, N.-H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 641–646 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Prigge, M. J., Lavy, M., Ashton, N. W. & Estelle, M. Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway. Curr. Biol. 20, 1907–1912 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Pierre-Jerome, E., Jang, S. S., Havens, K. A., Nemhauser, J. L. & Klavins, E. Recapitulation of the forward nuclear auxin response pathway in yeast. Proc. Natl Acad. Sci. USA 111, 9407–9412 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Prusinska, J. et al. The differential binding and biological efficacy of auxin herbicides. Pest Manag. Sci. 79, 305–1315 (2022).

    Google Scholar 

  119. Fastner, A., Absmanner, B. & Hammes, U. Z. in Plant Hormones (eds Kleine-Vehn, J. & Sauer, M.) 259–270 (Springer, 2017).

  120. Frank, O., Kreissl, J. K., Daschner, A. & Hofmann, T. Accurate determination of reference materials and natural isolates by means of quantitative 1H NMR spectroscopy. J. Agric. Food Chem. 62, 2506–2515 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Friesner, R. A. et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J. Med. Chem. 49, 6177–6196 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Halgren, T. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Friesner, R. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27, 221–234 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Søndergaard, C. R., Olsson, M. H. M., Rostkowski, M. & Jensen, J. H. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J. Chem. Theory Comput. 7, 2284–2295 (2011).

    Article  PubMed  Google Scholar 

  126. Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Greenwood, J. R., Calkins, D., Sullivan, A. P. & Shelley, J. C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des. 24, 591–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. ChemAxon Chemicalize. ChemAxon (2023) https://disco.chemaxon.com/calculators/demo/plugins/logd/

  129. Pan, X., Wang, H., Li, C., Zhang, J. Z. H. & Ji, C. MolGpka: a web server for small molecule pKa prediction using a graph-convolutional neural network. J. Chem. Inf. Model. 61, 3159–3165 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Roth, O. et al. Slow release of a synthetic auxin induces formation of adventitious roots in recalcitrant woody plants. Cambium-enriched samples of Eucalyptus grandis mature cuttings BioProject https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1029024 (2023).

Download references

Acknowledgements

We thank the undergraduate students A. Verblun and G. Yehezkely in the laboratory of R.W. for supporting experiments. We also thank E. Shani for providing DR5:Luciferase, DR5:Venus and aux1–7 Arabidopsis lines; M. Bennett and R. Swarup for providing the aux/lax quadruple mutant; M. Estelle for providing Y2H vectors; K. Ljung for providing the gh3 octuple mutant and B. Bartel for providing the ilr1-1 ill2-1 iar3-2 triple mutant and vectors expressing GST-recombinant version of ILR1, ILL2 and IAR3. We also thank I. Mayrose and K. Halabi for their assistance in constructing ILR1/ILLs phylogenetics. This work was supported by funding from the Israel Science Foundation (grant number 1057/21 to R.W.), the Chief Scientist of the Ministry of Agriculture and Rural Development, Israel (grant numbers 20-10-0067, 13-37-0005 and 20-01-0270 to R.W. and E.S.), the United States–Israel Binational Agricultural Research and Development Fund (BARD, grant number IS-5195-19R to R.W, E.S and C.J. Staiger (Purdue University, IN)), the Yuri Milner 70@70 Fellowship (to O.R.), the Deutsche Forschungsgemeinschaft (SFB024 TPB12 to C.D and SFB924 TPA08 and HA3468/6-3 to U.Z.H) and the Tel Aviv University Center for AI and Data Science (to N.B.-T).

Author information

Authors and Affiliations

Authors

Contributions

J.R., E.S. and R.W. conceived of the project and E.S. and R.W. supervised the project. O.R. designed and ran experiments and analyzed data. S.Y., O.S., A.E. and P.T. ran rooting experiments of cuttings from the different trees. I.V. synthesized and characterized compounds. A.E. and V.D. performed RNA sequencing and qPCR experiments. F.S. ran mass-spectrometry analyses of auxins and conjugates and analyzed data under the supervision of M.C.-W. A.K. designed and ran molecular simulation experiments with input from O.R. under the supervision of N.B.-T. A.F.-D. performed bioinformatics analysis of the RNA sequencing data. R.N. designed and performed SPR measurements. D.P.J. performed oocyte uptake assay under the supervision of U.Z.H. U.Z.H. performed SSM assays. V.P. performed mass spectrometry analyses on oocyte extracts and membranes under supervision of C.D. K.L.U. performed PIN purification under supervision of B.P.P. A.C. performed and analyzed binding assays of auxin receptors under the supervision of E.K. E.S., R.W. and O.R. wrote the manuscript with inputs from all co-authors.

Corresponding authors

Correspondence to Einat Sadot or Roy Weinstain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Danny Geelan, Catherine Bellini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Tables 1–3 and 1H- and 13C-NMR and mass-spectrometry data.

Reporting Summary

Supplementary Data

Source data for supplementary figures.

Source data

Source Data Figs. 1–6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth, O., Yechezkel, S., Serero, O. et al. Slow release of a synthetic auxin induces formation of adventitious roots in recalcitrant woody plants. Nat Biotechnol (2024). https://doi.org/10.1038/s41587-023-02065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-023-02065-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research