Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Programmable protein expression using a genetically encoded m6A sensor

Abstract

The N6-methyladenosine (m6A) modification is found in thousands of cellular mRNAs and is a critical regulator of gene expression and cellular physiology. m6A dysregulation contributes to several human diseases, and the m6A methyltransferase machinery has emerged as a promising therapeutic target. However, current methods for studying m6A require RNA isolation and do not provide a real-time readout of mRNA methylation in living cells. Here we present a genetically encoded m6A sensor (GEMS) technology, which couples a fluorescent signal with cellular mRNA methylation. GEMS detects changes in m6A caused by pharmacological inhibition of the m6A methyltransferase, giving it potential utility for drug discovery efforts. Additionally, GEMS can be programmed to achieve m6A-dependent delivery of custom protein payloads in cells. Thus, GEMS is a versatile platform for m6A sensing that provides both a simple readout for m6A methylation and a system for m6A-coupled protein expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the GEMS system.
Fig. 2: GEMS depends on m6A recognition.
Fig. 3: GEMS is METTL3 dependent.
Fig. 4: GEMS detects differences in methylation across cell types.
Fig. 5: GEMS senses changes in m6A caused by small-molecule inhibition of METTL3.
Fig. 6: m6A-coupled effector protein delivery counteracts the effects of m6A hypermethylation in cancer cells.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Shi, H., Wei, J. & He, C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol. Cell 74, 640–650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Flamand, M. N. & Meyer, K. D. The epitranscriptome and synaptic plasticity. Curr. Opin. Neurobiol. 59, 41–48 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meyer, K. D. & Jaffrey, S. R. Rethinking m6A readers, writers, and erasers. Annu. Rev. Cell Dev. Biol. 33, 319–342 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meyer, K. D. et al. 5′ UTR m6A promotes cap-independent translation. Cell 163, 999–1010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ries, R. J. et al. m6A enhances the phase separation potential of mRNA. Nature 571, 424–428 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou, J. et al. N6-methyladenosine guides mRNA alternative translation during integrated stress response. Mol. Cell 69, 636–647 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Engel, M. et al. The role of m6A/m-RNA methylation in stress response regulation. Neuron 99, 389–403 (2018).

  12. Widagdo, J. et al. Experience-dependent accumulation of N6-methyladenosine in the prefrontal cortex is associated with memory processes in mice. J. Neurosci. 36, 6771–6777 (2016).

  13. Zhang, Z. et al. METTL3-mediated N6-methyladenosine mRNA modification enhances long-term memory consolidation. Cell Res. 28, 1050–1061 (2018).

  14. Dai, D., Wang, H., Zhu, L., Jin, H. & Wang, X. N6-methyladenosine links RNA metabolism to cancer progression review-article. Cell Death Dis. 9, 124 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jiang, X. et al. The role of m6A modification in the biological functions and diseases. Signal Transduct. Target. Ther. 6, 74 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Williams, G. D., Gokhale, N. S. & Horner, S. M. Regulation of viral infection by the RNA modification N6-methyladenosine. Annu. Rev. Virol. 6, 235–253 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garcia-Campos, M. A. et al. Deciphering the ‘m6A code’ via antibody-independent quantitative profiling. Cell 178, 731–747 (2019).

  18. Zhang, Z. et al Single-base mapping of m6A by an antibody-independent method. Sci. Adv. 5, eaax0250 (2019).

  19. Liu, C. et al. Absolute quantification of single-base m6A methylation in the mammalian transcriptome using GLORI. Nat. Biotechnol. 41, 355–366 (2023).

  20. Meyer, K. D. DART-seq: an antibody-free method for global m6A detection. Nat. Methods 16, 1275–1280 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu, L. et al. m6A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nat. Biotechnol. 40, 1210–1219 (2022).

  22. Liu, N. et al. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 19, 1848–1856 (2013).

  23. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ke, S. et al. (2015). A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 29, 2037–2053 (2015).

  25. Iwamoto, M., Björklund, T., Lundberg, C., Kirik, D. & Wandless, T. J. A general chemical method to regulate protein stability in the mammalian central nervous system. Chem. Biol. 17, 981–988 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tegowski, M., Flamand, M. N. & Meyer, K. D. scDART-seq reveals distinct m6A signatures and mRNA methylation heterogeneity in single cells. Mol. Cell 82, 868–878 (2022).

  27. Xiao, Y.-L. et al. Transcriptome-wide profiling and quantification of N6-methyladenosine by enzyme-assisted adenosine deamination. Nat. Biotechnol. 41, 993–1003 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Castellanos-Rubio, A. et al. A novel RT-QPCR-based assay for the relative quantification of residue specific m6A RNA methylation. Sci. Rep. 9, 4220 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yankova, E. et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593, 597–601(2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cui, Q. et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 18, 2622–2634 (2017).

  31. Tzelepis, K. et al. Pharmacological inhibition of the RNA m6a writer METTL3 as a novel therapeutic strategy for acute myeloid leukemia. Blood 134, 403 (2019).

  32. Huang, H., Weng, H. & Chen, J. m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell 37, 270–288 (2020).

  33. Wilson, C., Chen, P. J., Miao, Z. & Liu, D. R. Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nat. Biotechnol. 38, 1431–1440 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lan, Q. et al. The critical role of RNA m6A methylation in cancer. Cancer Res. 79, 1285–1292 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, J. et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat. Cell Biol. 20, 1074–1083 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, J. et al. m6A methyltransferase METTL3 maintains colon cancer tumorigenicity by suppressing SOCS2 to promote cell proliferation. Oncol. Rep. 44, 973–986 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pinello, N., Sun, S. & Wong, J. J.-L. Aberrant expression of enzymes regulating m6A mRNA methylation: implication in cancer. Cancer Biol. Med. 15, 323 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin, Y., Wei, X., Jian, Z. & Zhang, X. METTL3 expression is associated with glycolysis metabolism and sensitivity to glycolytic stress in hepatocellular carcinoma. Cancer Med. 9, 2859–2867 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, X. et al. Analysis of METTL3 and METTL14 in hepatocellular carcinoma. Aging (Albany NY) 12, 21638–21659 (2020).

  40. Liu, J., Liu, Z., Li, W. & Zhang, S. SOCS2 is a potential prognostic marker that suppresses the viability of hepatocellular carcinoma cells.Oncol. Lett. 21, 399 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cui, M. et al. The suppressor of cytokine signaling 2 (SOCS2) inhibits tumor metastasis in hepatocellular carcinoma. Tumor Biol. 37, 13521–13531 (2016).

  42. Chen, M. et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 67, 2254–2270 (2018).

  43. O’Shea, J. J. & Murray, P. J. Cytokine signaling modules in inflammatory responses. Immunity 28, 477–487 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. O’Sullivan, L. A., Liongue, C., Lewis, R. S., Stephenson, S. E. M. & Ward, A. C. Cytokine receptor signaling through the Jak–Stat–Socs pathway in disease. Mol. Immunol. 44, 2497–2506 (2007).

  45. Durham, G. A., Williams, J. J. L., Nasim, M. T. & Palmer, T. M. Targeting SOCS proteins to control JAK-STAT signalling in disease. Trends Pharmacol. Sci. 40, 298–308 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Zhou, Y. et al. Suppressor of cytokine signalling-2 limits IGF1R-mediated regulation of epithelial-mesenchymal transition in lung adenocarcinoma article. Cell Death Dis. 9, 429 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dobie, R. et al. Direct stimulation of bone mass by increased GH signalling in the osteoblasts of Socs2−/− mice. J. Endocrinol. 223, 93–106 (2014).

  48. Zhang, Y. et al. SENP1 promotes MCL pathogenesis through regulating JAK-STAT5 pathway and SOCS2 expression. Cell Death Discov. 7, 192 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hu, J. et al. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J. Hematol. Oncol. 14, 157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, C. et al. Gain-of-function mutant p53 in cancer progression and therapy. J. Mol. Cell Biol. 12, 674–687 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ozaki, T. & Nakagawara, A. Role of p53 in cell death and human cancers. Cancers (Basel) 3, 994–1013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Bauer, M. R. et al. A structure-guided molecular chaperone approach for restoring the transcriptional activity of the p53 cancer mutant Y220C. Future Med. Chem. 11, 2491–2504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, X. et al. Small molecule induced reactivation of mutant p53 in cancer cells. Nucleic Acids Res. 41, 6034–6044 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Courtois, S. et al. ΔN-p53, a natural isoform of p53 lacking the first transactivation domain, counteracts growth suppression by wild-type p53. Oncogene 21, 6722–6728 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, X. Y., Zhang, J. & Zhu, J. S. The role of m6A RNA methylation in human cancer. Mol. Cancer 18, 103 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Guan, Q. et al. Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. J. Hematol. Oncol. 15, 13 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).

  59. Kluesner, M. G. et al. EditR: a method to quantify base editing from Sanger sequencing. CRISPR J. 1, 239–250 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kuchipudi, S. V. et al. 18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells. Virol. J. 9, 230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Meyer laboratory for helpful discussions and feedback. We are grateful to the Duke Cancer Institute Flow Cytometry Core and the Duke Functional Genomics Core for providing the infrastructure and support for cell sorting experiments. This work was supported by the Rita Allen Foundation and the National Institutes of Health (R01MH118366, DP1DA046584 and RM1HG011563) to K.D.M.

Author information

Authors and Affiliations

Authors

Contributions

K.D.M. conceived of the study, designed the GEMS system and performed initial characterization. B.F.M. and K.D.M. planned experiments and further developed the system. B.F.M. conducted experiments and analyzed data, with help from K.D.M. M.G.T. generated METTL3 degron cells, with guidance from S.M.H. C.L.H. oversaw ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) experiments to quantify m6A. K.D.M. and B.F.M. wrote the manuscript.

Corresponding author

Correspondence to Kate D. Meyer.

Ethics declarations

Competing interests

K.D.M. has filed a patent application for the GEMS technology through Duke University. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8

Reporting Summary

Supplementary Data 1

Flow cytometry gating strategy used for cell sorting

Supplementary Data 2

Source Data for western blots presented in Supplementary Figures

Source data

Source Data Figs. 2–4

Source Data for western blots presented in Figs. 2–4

Source Data Figs. 5 and 6

Source Data for western blots presented in Figs. 5 and 6

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marayati, B.F., Thompson, M.G., Holley, C.L. et al. Programmable protein expression using a genetically encoded m6A sensor. Nat Biotechnol (2024). https://doi.org/10.1038/s41587-023-01978-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-023-01978-3

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research