Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-affinity one-step aptamer selection using a non-fouling porous hydrogel

Abstract

Aptamers, commonly referred to as chemical antibodies, are used in a wide range of applications including drug delivery and biosensing. However, the process of aptamer selection poses a substantial challenge, as it requires numerous cycles of enrichment and involves issues with nonspecific binding. We present a simple, fast instrument-free method for aptamer enrichment and selection based on a diffusion-binding process in a three-dimensional non-fouling porous hydrogel with immobilized target proteins. Low-affinity aptamer candidates can be rapidly released from the hydrogel, whereas high-affinity candidates are restricted due to their strong binding to the immobilized protein targets. Consequently, a one-step enriched aptamer pool can strongly bind the protein targets. This enrichment is consistent across five proteins with isoelectric points in varying ranges. With thrombin as a representative model, the anti-thrombin aptamer identified from an enriched aptamer pool has been found to have a binding affinity that is comparable to those identified over ten cycles of selection using traditional methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hydrogel for aptamer selection (HAS).
Fig. 2: Hydrogel characterization and aptamer selection.
Fig. 3: Analysis of aptamer candidates acquired with one-step HAS.
Fig. 4: Selection and characterization of aptamers for GM-CSF, IL-12, IL-10 and BDNF.

Similar content being viewed by others

Data availability

Data supporting this new method are available within the article and its Supplementary Information. Parameters for simulation are provided in Supplementary Table 1. Sequences of ssDNA library, PCR primers and aptamer candidates are included in Supplementary Tables 25. All uncropped gel electrophoresis data are available in Source Data and Supplementary Information. Source data are provided with this paper.

References

  1. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jinek, M. et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 1742–1749 (2017).

    Article  Google Scholar 

  5. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z. & Shapiro, E. DNA molecule provides a computing machine with both data and fuel. Proc. Natl Acad. Sci. USA 100, 2191–2196 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, Y. et al. Controlled assembly of dendrimer-like DNA. Nat. Mater. 3, 38–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Tasset, D., Kubik, M. F. & Steiner, W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J. Mol. Biol. 272, 688–698 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Boshtam, M., Asgary, S., Kouhpayeh, S., Shariati, L. & Khanahmad, H. Aptamers against pro- and anti-inflammatory cytokines: a review. Inflammation 40, 340–349 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Famulok, M. & Mayer, G. Aptamers and SELEX in chemistry and biology. Chem. Biol. 21, 1055–1058 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Rusconi, C. P. et al. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419, 90–94 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Farokhzad, O. C. et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl Acad. Sci. USA 103, 6315–6320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, J. & Lu, Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. 45, 90–94 (2006).

    Article  CAS  Google Scholar 

  16. Zhao, W. et al. Cell-surface sensors for real-time probing of cellular environments. Nat. Nanotechnol. 6, 524–531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McNamara, J. A. et al. Cell type–specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 24, 1005–1015 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Gotrik, M. R., Feagin, T. A., Csordas, A. T., Nakamoto, M. & Soh, H. T. Advancements in aptamer discovery technologies. Acc. Chem. Res. 49, 1903–1910 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Vant-Hull, B. P., Payano-Baez, A., Davis, R. H. & Gold, L. The mathematics of SELEX against complex targets. J. Mol. Biol. 278, 579–597 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Djordjevic, M. SELEX experiments: new prospects, applications and data analysis in inferring regulatory pathways. Biomol. Eng 24, 179–189 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Mendonsa, S. D. & Bowser, M. T. In vitro selection of aptamers with affinity for neuropeptide y using capillary electrophoresis. J. Am. Chem. Soc. 127, 9382–9383 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Hoon, S., Zhou, B., Janda, K. D., Brenner, S. & Scolnick, J. Aptamer selection by high-throughput sequencing and informatic analysis. BioTechniques 51, 413–416 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Lou, X. et al. Micromagnetic selection of aptamers in microfluidic channels. PNAS 106, 2989–2994 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, J. et al. Integrated microfluidic isolation of aptamers using electrophoretic oligonucleotide manipulation. Sci. Rep. 6, 26139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wilson, B. & Soh, H. T. Re-evaluating the conventional wisdom about binding assays. Trends Biochem. Sci. 45, 639–649 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun, Y., Gombotz, W. R. & Hoffman, A. Synthesis and characterization of non-fouling polymer surfaces: I. Radiation grafting of hydroxyethyl methacrylate and polyethylene glycol methacrylate onto silastic film. J. Bioact. Compat. Polym. 1, 316–334 (1986).

    Article  CAS  Google Scholar 

  27. Ma, H., Hyun, J., Stiller, P. & Chilkoti, A. ‘Non-fouling’ oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv. Mater. 16, 338–341 (2004).

    Article  CAS  Google Scholar 

  28. Sanchez-Cano, C. & Carril, M. Recent developments in the design of non-biofouling coatings for nanoparticles and surfaces. Int. J. Mol. Sci. 21, 1007 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. MacDonald, J., Houghton, P., Xiang, D., Duan, W. & Shigdar, S. Truncation and mutation of a transferrin receptor aptamer enhances binding affinity. Nucleic Acid Ther. 26, 348–354 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Le, T. T., Chumphukam, O. & Cass, A. Determination of minimal sequence for binding of an aptamer. A comparison of truncation and hybridization inhibition methods. RSC Adv. 4, 47227–47233 (2014).

    Article  CAS  Google Scholar 

  31. Bock, L. C., Griffin, L. L., Latham, J., Vermaas, E. & Toole, J. M. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Tokmakov, A. A., Kurotani, A. & Sato, K. Protein pI and intracellular localization. Front. Mol. Biosci. 8, 775736 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma, X., Balasubramanian, G. & Shrotriya, P. Electrical stimulus controlled binding/unbinding of human thrombin-aptamer complex. Sci. Rep. 6, 37449 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jiang, Z., You, L., Dou, W., Sun, T. & Xu, P. Effects of an electric field on the conformational transition of the protein: a molecular dynamics simulation study. Polymers 11, 282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thormann, W., Zhang, C., Caslavska, J., Gebauer, P. & Mosher, R. A. Modeling of the impact of ionic strength on the electroosmotic flow in capillary electrophoresis with uniform and discontinuous buffer systems. Anal. Chem. 70, 549–562 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Acinas, S. G., Sarma-Rupavtarm, R. B., Klepac-Ceraj, V. & Polz, M. F. PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl. Environ. Microbiol. 71, 8966–8969 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takahashi, M. et al. High throughput sequencing analysis of RNA libraries reveals the influences of initial library and PCR methods on SELEX efficiency. Sci. Rep. 6, 33697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cho, M. et al. Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing. PNAS 107, 15373–15378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kramer, S. T., Gruenke, P. R., Alam, K. K., Xu, D. & Burke, D. H. FASTAptameR 2.0: a web tool for combinatorial sequence selections. Mol. Ther. Nucleic Acids 29, 862–870 (2022).

Download references

Acknowledgements

This work was partly supported by the National Institutes of Health (grants R01HL122311 and R01AR073364).

Author information

Authors and Affiliations

Authors

Contributions

N.K.S. designed experiments, did experiments, analyzed data and wrote the manuscript. Yixun Wang studied the simulation of aptamer transport, did experiments, analyzed data and wrote the manuscript. C.W., B.D., X.W. and K.L. performed experiments and analyzed data. Yong Wang coined the concept, designed experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Yong Wang.

Ethics declarations

Competing interests

N.K.S. and Yong Wang filed a patent application (US patent 63/428,466) based on the method presented in this work.

Peer review

Peer review information

Nature Biotechnology thanks Honggang Cui, John Rossi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Tables 1–6.

Reporting Summary

Supplementary Video 1

Supporting video 1.

Source data

Source Data Fig. 2

Unprocessed gels.

Source Data Fig. 4

Unprocessed gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N.K., Wang, Y., Wen, C. et al. High-affinity one-step aptamer selection using a non-fouling porous hydrogel. Nat Biotechnol (2023). https://doi.org/10.1038/s41587-023-01973-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-023-01973-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing