Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Droplet-based transcriptome profiling of individual synapses

Matters Arising to this article was published on 27 July 2023

Abstract

Synapses are crucial structures that mediate signal transmission between neurons in complex neural circuits and display considerable morphological and electrophysiological heterogeneity. So far we still lack a high-throughput method to profile the molecular heterogeneity among individual synapses. In the present study, we develop a droplet-based single-cell (sc) total-RNA-sequencing platform, called Multiple-Annealing-and-Tailing-based Quantitative scRNA-seq in Droplets, for transcriptome profiling of individual neurites, primarily composed of synaptosomes. In the synaptosome transcriptome, or ‘synaptome’, profiling of both mouse and human brain samples, we detect subclusters among synaptosomes that are associated with neuronal subtypes and characterize the landscape of transcript splicing that occurs within synapses. We extend synaptome profiling to synaptopathy in an Alzheimer’s disease (AD) mouse model and discover AD-associated synaptic gene expression changes that cannot be detected by single-nucleus transcriptome profiling. Overall, our results show that this platform provides a high-throughput, single-synaptosome transcriptome profiling tool that will facilitate future discoveries in neuroscience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of MATQ-Drop and the performance in species-mixing experiment.
Fig. 2: The mouse hippocampus cell atlas and synaptome atlas.
Fig. 3: The human hippocampus synaptome atlas.
Fig. 4: Nascent RNA-based cell atlas of the human hippocampus.
Fig. 5: AD-associated synaptopathy.
Fig. 6: The cell typing using only lncRNA species and the detection sensitivity comparison between 10x Chromium and MATQ-Drop.

Similar content being viewed by others

Data availability

The raw sequencing files are available in Gene Expression Omnibus (GEO) database under accession no. GSE199346.

The following public datasets were used in the present study for benchmark comparison: (1) DroNc-seq and Drop-seq on 3T3 cell line (https://singlecell.broadinstitute.org/single_cell/study/SCP128/dronc-seq-and-drop-seq-on-3t3-cell-line#study-download), (2) GEO accession no. GSE106678 and (3) 5k Adult Mouse Brain Nuclei Isolated with Chromium Nuclei Isolation Kit (10x Genomics, https://www.10xgenomics.com/resources/datasets/5k-adult-mouse-brain-nuclei-isolated-with-chromium-nuclei-isolation-kit-3-1-standard).

The mm10 genome can be accessed at https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.20 and the Gencode gene annotation file at https://www.gencodegenes.org/mouse/release_M10.html. The hg19 genome can be accessed at https://www.ncbi.nlm.nih.gov/data-hub/genome/GCF_000001405.25 and the Gencode gene annotation file at https://www.gencodegenes.org/human/release_19.html.

Code availability

The analysis code customized for MATQ_Drop sequencing data is available at https://github.com/zonglab/MATQ_Drop.

References

  1. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3, 661–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Ibanez-Sandoval, O. et al. Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase-expressing neurons in adult mouse striatum. J. Neurosci. 30, 6999–7016 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cizeron, M. et al. A brainwide atlas of synapses across the mouse life span. Science 369, 270–275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu, F. et al. Architecture of the mouse brain synaptome. Neuron 99, 781–799 e710 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sheng, K., Cao, W., Niu, Y., Deng, Q. & Zong, C. Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nat. Methods 14, 267–270 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ramskold, D. et al. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zong, C., Lu, S., Chapman, A. R. & Xie, X. S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu, P. et al. Dissecting cell-type composition and activity-dependent transcriptional state in mammalian brains by massively parallel single-nucleus RNA-Seq. Mol. Cell 68, 1006–1015.e1007 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hafner, A. S., Donlin-Asp, P. G., Leitch, B., Herzog, E. & Schuman, E. M. Local protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments. Science 364, eaau3644 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Cajigas, I. J. et al. The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74, 453–466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stuart, T. et al. Comprehensive Integration of single-cell data. Cell 177, 1888–1902 e1821 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jones, K. A. et al. Neurodevelopmental disorder-associated ZBTB20 gene variants affect dendritic and synaptic structure. PLoS ONE 13, e0203760 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Frese, C. K. et al. Quantitative map of proteome dynamics during neuronal differentiation. Cell Rep. 18, 1527–1542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dougherty, M. K. et al. KSR2 is a calcineurin substrate that promotes ERK cascade activation in response to calcium signals. Mol. Cell 34, 652–662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Montgomery, J. M. & Madison, D. V. Discrete synaptic states define a major mechanism of synapse plasticity. Trends Neurosci. 27, 744–750 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Montgomery, J. M. & Madison, D. V. State-dependent heterogeneity in synaptic depression between pyramidal cell pairs. Neuron 33, 765–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Buckley, P. T. et al. Cytoplasmic intron sequence-retaining transcripts can be dendritically targeted via ID element retrotransposons. Neuron 69, 877–884 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Glanzer, J. et al. RNA splicing capability of live neuronal dendrites. Proc. Natl Acad. Sci. USA 102, 16859–16864 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bell, T. J. et al. Cytoplasmic BK(Ca) channel intron-containing mRNAs contribute to the intrinsic excitability of hippocampal neurons. Proc. Natl Acad. Sci. USA 105, 1901–1906 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bell, T. J. et al. Intron retention facilitates splice variant diversity in calcium-activated big potassium channel populations. Proc. Natl Acad. Sci. USA 107, 21152–21157 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aoto, J., Martinelli, D. C., Malenka, R. C., Tabuchi, K. & Sudhof, T. C. Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell 154, 75–88 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hughes, A. N. & Appel, B. Oligodendrocytes express synaptic proteins that modulate myelin sheath formation. Nat. Commun. 10, 4125 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234.e214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Caceres, A., Banker, G., Steward, O., Binder, L. & Payne, M. MAP2 is localized to the dendrites of hippocampal neurons which develop in culture. Brain Res. 315, 314–318 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Naisbitt, S. et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23, 569–582 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Awasthi, A. et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science 363, eaav1483 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Hines, J. H., Ravanelli, A. M., Schwindt, R., Scott, E. K. & Appel, B. Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci. 18, 683–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mensch, S. et al. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat. Neurosci. 18, 628–630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wake, H. et al. Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons. Nat. Commun. 6, 7844 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Sakers, K. et al. Astrocytes locally translate transcripts in their peripheral processes. Proc. Natl Acad. Sci. USA 114, E3830–E3838 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586–1590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roy, E. R. et al. Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. J. Clin. Invest 130, 1912–1930 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shankar, G. M. et al. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci. 27, 2866–2875 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Habib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23, 701–706 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med. 26, 131–142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zalcman, G., Federman, N. & Romano, A. CaMKII isoforms in learning and memory: localization and function. Front. Mol. Neurosci. 11, 445 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, S. J. et al. Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biol. 17, 67 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zilionis, R. et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 12, 44–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Krishnaswami, S. R. et al. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat. Protoc. 11, 499–524 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 3 (2011).

    Article  Google Scholar 

  48. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 e3529 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 e324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the McNair family for their support. We also thank NIH NeuroBioBank for providing brain tissue samples. We thank H. Dierick and M. Xue for their helpful discussion. We thank S. Eshghjoo for providing the mouse samples. We thank other Zong lab members for their help in this project. FACS experiments were performed in the Cytometry and Cell Sorting Core at Baylor College of Medicine with funding from the CPRIT Core Facility Support Award (no. CPRIT-RP180672), the NIH (grant nos. P30 CA125123, S10 RR024574 and S10 OD025251) and the assistance of J. M. Sederstrom. C.Z. is supported by a McNair Scholarship, NIH Director’s New Innovator Award (no. 1DP2EB020399) and the Behavioral Plasticity Research Institute (grant no. DBI-2021795). H.Z. is supported by the NIH (grant nos. RF1 AG020670, RF1 NS093652 and P01 AG066606).

Author information

Authors and Affiliations

Authors

Contributions

C.Z. and D.A.W. designed the project. C.Z. and M.N. wrote the manuscript. M.N. and W.C. contributed to the MATQ-Drop chemistry development and hydrogel bead design and synthesis, and performed the major experiments. W.C., Y.W., Q.Z. and M.N. contributed to the microfluidics operation and microfluidics fabrication. J.L. performed the FACS and western blotting experiments. H.Z. and B.W. contributed mouse brain samples and AD mouse models. B.W. performed immunofluorescence staining experiments and related quantification. M.N. and C.Z. performed the bioinformatic analysis.

Corresponding authors

Correspondence to David A. Weitz or Chenghang Zong.

Ethics declarations

Competing interests

M.N., D.A.W. and C.Z. are cofounders and equity holders of Pioneer Genomics Inc. Baylor College of Medicine have submitted a patent application related to MATQ-Drop (US Provisional Patent Application serial no. 63/240339, 2 September 2021). The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Tibor Harkany and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Texts 1 and 2, Content of Additional Supplementary Files and Source Data.

Reporting Summary

Supplementary Tables 1–7

Supplementary Table 1. Cluster annotation of mouse synaptosomes; Supplementary Table 2. Marker genes of each mouse synaptosome cluster; Supplementary Table 3. Cluster annotation of mouse nuclei; Supplementary Table 4. Marker genes of each mouse nucleus cluster; Supplementary Table 5. Differentially expressed genes between mouse synaptosomes and nuclei; Supplementary Table 6. Gene-based intron percentage in mouse synaptosomes and nuclei; Supplementary Table 7. List of genes whose transcripts are unspliced in mouse synapses.

Supplementary Tables 8–24

Supplementary Table 8. Information of frozen human brain tissues; Supplementary Table 9. Cluster annotation of human synaptosomes; Supplementary Table 10. Marker genes of each human synaptosome cluster; Supplementary Table 11. Differentially expressed genes between human HIsynapses and LO-synapses; Supplementary Table 12. GO-BP pathway enrichment of human HI-synapse enriched genes; Supplementary Table 13. GO-BP pathway enrichment of human LO-synapse enriched genes; Supplementary Table 14. Differentially expressed genes between human Nsynapses and other synapses; Supplementary Table 15. Differentially expressed genes between human LOsynapses and neuron-glia junctions; Supplementary Table 16. Nascent RNA-based cluster annotation of human brain nuclei; Supplementary Table 18. Annotation of human inhibitory neuron subtypes; Supplementary Table 19. Marker genes of each human inhibitory neuron subtypes; Supplementary Table 20. Differentially expressed genes between human HIsynapse subtypes and corresponding neuronal nucleus subtypes; Supplementary Table 21. GO-BP pathway enrichment of human synapse-enriched genes across four different neuronal subtypes; Supplementary Table 22. GO-BP pathway enrichment of human nucleus-enriched genes across four different neuronal subtypes; Supplementary Table 23. Gene-based intron percentage in human synaptosomes and nuclei; Supplementary Table 24. List of genes whose transcripts are unspliced in human synapses.

Supplementary Tables 25–27

Supplementary Table 25. Differentially expressed genes between 5xFAD and WT mouse nuclei, transcript-based; Supplementary Table 26. Differentially expressed genes between 5xFAD and WT mouse nuclei, exon-based; Supplementary Table 27. Differentially expressed genes between 5xFAD and WT mouse synaptosomes.

Supplementary Tables 28–31

Supplementary Table 28. LncRNA-based cluster annotation of human brain nuclei; Supplementary Table 29. Marker lncRNA genes of each lncRNA-based human nucleus cluster; Supplementary Table 30. LncRNA-based cluster annotation of mouse brain nuclei; Supplementary Table 31. Marker lncRNA genes of each lncRNA-based mouse nucleus cluster.

Supplementary Tables 32–34

Supplementary Table 32. Sequences of oligonucleotides used in barcoded hydrogel bead synthesis; Supplementary Table 33. Summary information of human sample library; Supplementary Table 34. Summary information of mouse sample library.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, M., Cao, W., Wang, Y. et al. Droplet-based transcriptome profiling of individual synapses. Nat Biotechnol 41, 1332–1344 (2023). https://doi.org/10.1038/s41587-022-01635-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-022-01635-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing