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            Abstract
Genome sequencing studies have identified millions of somatic variants in cancer, but it remains challenging to predict the phenotypic impact of most. Experimental approaches to distinguish impactful variants often use phenotypic assays that report on predefined gene-specific functional effects in bulk cell populations. Here, we develop an approach to functionally assess variant impact in single cells by pooled Perturb-seq. We measured the impact of 200 TP53 and KRAS variants on RNA profiles in over 300,000 single lung cancer cells, and used the profiles to categorize variants into phenotypic subsets to distinguish gain-of-function, loss-of-function and dominant negative variants, which we validated by comparison with orthogonal assays. We discovered that KRAS variants did not merely fit into discrete functional categories, but spanned a continuum of gain-of-function phenotypes, and that their functional impact could not have been predicted solely by their frequency in patient cohorts. Our work provides a scalable, gene-agnostic method for coding variant impact phenotyping, with potential applications in multiple disease settings.
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                    Fig. 1: Coding variants Perturb-seq for scalable high-content profiling of coding variant impact.[image: ]


Fig. 2: Coding variants Perturb-seq recapitulates known biology of loss-of-function variants in the tumor suppressor gene TP53.[image: ]


Fig. 3: sc-eVIP annotates known gain-of-function variants in the KRAS oncogene.[image: ]


Fig. 4: KRAS variants form a gradual functional gradient within and across variant groups.[image: ]


Fig. 5: Relationship between sc-eVIP scores and the frequency of variants in patient cohorts.[image: ]


Fig. 6: Power analysis and outlook for the variant-to-function efforts to phenotype cancer coding variation.[image: ]
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Extended data

Extended Data Fig. 1 Quality control, scoring and clustering for TP53 Perturb-Seq experiment.
a. Distribution of lengths (in kb) of coding regions for 309 actionable genes from the Foundation Medicine Panel. The principal transcript as defined by the APPRIS database was used for each gene. b. Variant representation in the library. Number of barcode reads (y axis) for each tested variant (x axis), either after transduction and 2-day puromycin selection (â€˜no recoveryâ€™), or 42.5 hours after puromycin selection (â€˜42.5h recoveryâ€™). We refer to variants that are present in the pooled library as passing quality control in the main text. c-g. Quality control metrics. c. Cumulative distribution function (CDF) of number of cells (x axis) profiled for each variant, considering either all cells (gray) or only cells with a single variant (black). d. Distribution of the number of variants detected per cell. e. Distribution of the number of variant barcode (vbc) UMIs per cell per variant. f. The number of cells detected per variant (y axis) and the variantâ€™s barcode expression (x axis, transcripts per 10,000 UMIs/cell (TP10K)) for cells with a single variant, colored by class (black: WT-like, light blue: Impactful I, dark blue: Impactful II). g. Distribution of mean variant barcode expression (TP10K, x axis). Variants with a fold change higher than 1.5 compared to the WT barcode are colored by variant class. h. sc-eVIP scores are independent of variant expression. Variant expression (y axis, TP10K) for variant (dots) with different sc-eVIP scores (x axis). i. Sensitivity for identifying impactful variants at an FDR of 5% (y axis), as a function of the number of principal components used (colors) and as a function of the number of cells per variant (x axis). Boxplots represent the results of 10 subsampling iterations, and show the median, with their ends representing the 25% and 75% quartiles, and with whiskers extending between (25% quartile - 1.5 interquartile range) and (75% quartile + 1.5 interquartile range) or the most extreme values in the data, if they fall within this range. j. Impact of number of cells on sc-eVIP scores. sc-eVIP scores (y axis) for each variant (x axis) computed with varying numbers of subsampled cells (rows), colored by variant class. Mean scores (center) and 1 standard deviation (error bars) are based on 10 subsampling iterations, and are colored by variant classs. k. Low-dimensional embedding of mean expression profiles of variants (dots), colored by variant class (left), or by Louvain clustering (right).


Extended Data Fig. 2 Gene programs impacted by TP53 variants.
a-d. Gene programs impacted by variant classes. a. UMAP embedding of single-cell profiles (dots), colored by program scores (color bar) and labeled by selected Gene Ontology biological processes enriched in genes from each program (top). b. CDF for program scores (x axis) for each variant, colored by class. c. Average expression (z-score, color bar) in cells of each variant (columns) of genes (rows) most correlated with the mean of the expression program. d. Difference (dot color) in mean expression of each gene program (rows) between the cells in each cluster and all other cells, and the significance of this difference (dot size, -log10(adj. p-value, Benjamini-Hochberg procedure), Kolmogorov-Smirnov two-sided test, Methods). Colored border: BH FDR<10%. e,f. Principal component analysis. e. UMAP embedding of single-cell profiles, colored by principal component (PC) scores (color bar), for each of the first 10 PCs. f. CDFs for the PC scores (x axis) for the cells of each variant, colored by class. g. ROC curve of the true positive (y axis) and false positive (x axis) rate when using each PC (color) to distinguish between single cells with synonymous variants and those with variants in hotspot positions 175, 248, and 273. Color legend: Area Under the ROC curve (AUROC) for each variant.


Extended Data Fig. 3 Analysis with stringent thresholding of variant barcodes per cell for TP53 variants.
a.Distribution of normalized variant expression (x axis). The vertical red line represents a stringent threshold for detecting variant barcodes per cell, whose results are investigated in this figure. b. Cumulative distribution function (CDF) of number of cells (x axis) profiled for each variant after using the threshold in a, considering either all cells (gray) or only cells with a single variant (black). c. Distribution of the number of variants detected per cell. d. Low-dimensional embedding of mean expression profiles of variants (dots), colored by variant class. e. sc-eVIP scores from the full dataset (x axis) versus computed on the thresholded dataset (y axis), colored by variant class. f. Sensitivity of sc-eVIP scores (y axis) for identifying impactful variants, at an FDR of 5%, as a function of the number of subsampled cells per variant (x axis) (black: all variants, light blue: Impactful I variants, dark blue: Impactful II variants). Mean sensitivity (lines) and 95% confidence intervals (error shade) are based on 10 different subsampling iterations. g. Top: Hierarchical clustering of variants by their correlation profiles, for the thresholded dataset. Bottom: average expression profile of all variable genes (rows) in each variant (columns), grouped into 8 gene programs (row colors). Program 1, higher in assigned vs. unassigned cells was enriched for translation, nonsense-mediated decay, and viral transcription, and may reflect the response to lentiviral transduction.


Extended Data Fig. 4 Comparison of sc-eVIP with cellular phenotyping assays and cell cycle effects for TP53 variants.
a-c. sc-eVIP impact scores and gene programs agree with functional growth assays under Nutlin-3 treatment in a TP53 wildtype background (top) or a TP53 null background (middle) and under etoposide in a TP53 null background (bottom). a. Growth assay score (y axis) and sc-eVIP score (x axis), for each variant (dots), colored by variant class. b. Growth assay score (y axis) and normalized variant expression (x axis, transcripts per 10,000 UMIs/cell (TP10K)) for each variant (dots), colored by variant class. c. The Spearman correlation (x axis) between the growth assay score for each variant and mean gene expression across the variants for the genes (y axis) whose expression is most strongly correlated with the growth assays score. d. The Spearman correlation (x axis) between mean gene program scores (y axis) and growth assay scores across variants. e. The Spearman correlation (x axis) between the proportion of cells from each variant in each cluster and the growth assays under Nutlin-3 treatment in a TP53 wildtype background (top) or a TP53 null background (middle) and under etoposide in a TP53 null background (bottom). f. Heatmap of the Spearman correlation between TP53 growth assays and sc-eVIP scores. g. Proportion of cells in each cell cycle phase (y axis) among cells carrying each of 99 variants (dots, n=median 926 cells/variant) across variant classes (x axis). P-values for a two-sided t-test have been adjusted using the Benjamini-Hochberg procedure.


Extended Data Fig. 5 Quality control, scoring and clustering for KRAS Perturb-Seq experiment.
a. Variant representation in the library. Number of barcode reads (y axis) for each tested variant (x axis), either after transduction and 2-day puromycin selection (â€˜no recoveryâ€™), or 42.5 hours after puromycin selection (â€˜42.5h recoveryâ€™). b-f. Quality control metrics. b. Cumulative distribution function (CDF) of number of cells (x axis) profiled for each variant, considering either all cells (gray) or only cells with a single variant (black). c. Distribution of the number of variants detected per cell. d. Distribution of the number of variant barcode (vbc) UMIs per cell per variant. e. The number of cells detected per variant (y axis) and the variantâ€™s barcode expression (x axis, transcripts per 10,000 UMIs/cell (TP10K)) for cells with a single variant, colored by class. f. Distribution of mean variant barcode expression (TP10K, x axis). Variants with a fold change higher than 1.5 compared to the WT barcode are colored by variant class. g. sc-eVIP scores are independent of variant expression. Variant expression (y axis, TP10K) for variants (dots) with different sc-eVIP scores (x axis). h. Sensitivity for identifying impactful variants at an FDR of 5%, as a function of the number of principal components used (colors) and as a function of the number of cells per variant (x axis). Boxplots represent the results of 10 subsampling iterations, and show the median, with their ends representing the 25% and 75% quartiles, with whiskers extending between (25% quartile - 1.5 interquartile range) and (75% quartile + 1.5 interquartile range) or the most extreme values in the data, if they fall within this range. i. Impact of number of cells on sc-eVIP scores. sc-eVIP scores (y axis) for each variant (x axis) computed with varying numbers of subsampled cells (rows), colored by variant class. Mean scores (center) and 1 standard deviation (error bars) are based on 10 subsampling iterations, and are colored by variant classs. j. Low-dimensional embedding of mean expression profiles of variants (dots), colored by variant class (left), or by Louvain clustering (right). k. Sensitivity of sc-eVIP scores (y axis) for identifying impactful variants, at an FDR of 5%, as a function of the number of subsampled cells per variant (x axis) (magenta: all variants, green: Impactful I, purple: Impactful II, gold: Impactful III, red: Impactful IV (gain-of-function)). Mean sensitivity (lines) and a 95% confidence interval (shade) are based on 10 different subsampling iterations.


Extended Data Fig. 6 Analysis with stringent thresholding of variant barcodes per cell for KRAS variants.
a.Distribution of normalized variant expression (x axis, transcripts per 10,000 UMIs/cell (TP10K)). The vertical red line represents a stringent threshold for detecting variant barcodes per cell, whose results are investigated in this figure. b. Cumulative distribution function (CDF) of number of cells (x axis) profiled for each variant after using the threshold in a, considering either all cells (gray) or only cells with a single variant (black). c. Distribution of the number of variants detected per cell. d. Low-dimensional embedding of mean expression profiles of variants (dots), colored by variant class, as determined in Fig. 3a. e. sc-eVIP scores from the full dataset (x axis) versus computed on the thresholded dataset (y axis), colored by variant class. f. Sensitivity of sc-eVIP scores (y axis) for identifying impactful variants, at an FDR of 5%, as a function of the number of subsampled cells per variant (x axis) (black: all variants, green: Impactful I, purple: Impactful II, gold: Impactful III, red: Impactful IV (gain-of-function)). Mean sensitivity (lines) and 95% confidence intervals (error shade) are based on 10 different subsampling iterations. g. Top: Hierarchical clustering of variants by their correlation profiles, for the thresholded dataset. Bottom: average expression profile of all variable genes (rows) in each variant (columns), grouped into 12 gene programs (row colors). Program 8, higher in assigned vs. unassigned cells was enriched for translation, nonsense-mediated decay, and viral transcription, and may reflect the response to lentiviral transduction.


Extended Data Fig. 7 Gene programs, and cell cycle changes impacted by KRAS variants.
a-d. Gene programs impacted by variant classes. a-b. UMAP embedding of single-cell profiles (b), colored by program scores (color bar) and labeled by selected Gene Ontology biological processes enriched in genes from each program (a). c. CDF for program scores (x axis) for each variant, colored by class. d. Average expression (z-score, color bar) in cells of each variant (columns) of genes (rows) most correlated with the mean of the expression program. e. Difference (dot color) in mean expression of each gene program (rows) between the cells in each cluster (columns, as in Fig. 4e) and all other cells, and the significance of this difference (dot size, -log10(adj. p-value, Benjamini-Hochberg procedure), Kolmogorov-Smirnov test, Methods). Colored border: BH FDR<10%. f. ROC curve of the true positive (y axis) and false positive (x axis) rate when using each PC (color) to distinguish between single cells with synonymous variants and those with variants in hotspot positions 12, 13 and 61. Color legend: Area Under the ROC curve (AUROC) for each variant. g,h. Principal component analysis. g. UMAP embedding of single-cell profiles, colored by principal component (PC) scores (color bar), for each of the first 10 PCs. h. CDFs for the PC scores (x axis) for the cells of each variant, colored by class. i. Variant expression (y axis) as a function of PC 3 scores (x axis), for each variant (dots). Variants are colored by variant class. j. Proportion of cells in each cell cycle phase (y axis) among cells carrying each of 98 variants (dots, n=median 1058 cells/variant) across variant classes (x axis). P-values for a two-sided t-test have been adjusted using the Benjamini-Hochberg procedure.


Extended Data Fig. 8 Additional quality controls.
a,b. Spearman correlation between sc-eVIP scores and genes most highly correlated with sc-eVIP scores (x axis) for TP53 (a) and KRAS (b). c. Significance (y axis) of two-sided t-tests comparing the expression of each gene (dots) in bulk RNA-seq samples with WT KRAS and either G12C (left) or G12V (right). The genes are grouped by their gene programs (x axis) as defined in our current single-cell study. Values represent signed -log10 (p-values), adjusted for multiple testing using the Benjamini-Hochberg procedure.


Extended Data Fig. 9 Variant-by-variant detailed representation of all analyses for TP53 variants.
a. Variant features. Number of cells (y axis, top), distribution of normalized variant barcode expression (y axis, middle; red: variants with a fold-change greater than 1.5) and sc-eVIP scores (y axis, bottom; black: significant scores) for each variant (x axis), ordered as in Fig. 2d. Gray font: controls (synonymous and ExAC), blue font: hotspot variants (positions 175, 248, 273). b. Agreement with other data features. Top: difference (dot color) in mean expression or signature score between a variant (columns, ordered as in Fig. 2d) and unassigned cells and the significance of this difference (dot size, -log10(adj. p-value, Benjamini-Hochberg procedure), Kolmogorov-Smirnov two-sided test, Methods) for each of two genes canonically induced by TP53 and two TP53-associated signatures (rows). Colored border: BH FDR<10%. Middle: Growth (z-score, color bar) in three functional assays (rows) of each variant (columns). Bottom: Mutation prevalence (log2(counts+1) of variant occurrences) in two datasets (rows) of each variant, ordered as in Fig. 2d. c. Gene programs association with variants. Top: Difference (dot color) in mean program score (top) or mean PC score (bottom) between a variant (columns) and WT overexpressing cells and the significance of this difference (dot size, -log10(adj.p-value, Benjamini-Hochberg procedure), Kolmogorov-Smirnov two-sided test, Methods) for each gene program (top, rows, Methods), or each of the top 10 PCs (bottom, rows). Colored border: BH FDR<10%. d,e. Relation of variants to different clusters and cell cycle phases. Left: Proportion of cells (bar height) in each cell cluster (d) or cell cycle phase (e) (rows) derived for each variant (columns), annotated at the top with significance from a chi-square test comparing the cell state distribution of each variant with that of WT overexpressing cells (-log10(adj. p-value, Benjamini-Hochberg procedure)). Right: UMAP embedding of single-cell profiles, colored by cell clusters (d) or cell cycle phase (e). f. Relation of variants to the TP53 protein structure. sc-eVIP scores (y axis) of each variant (dot, colored by the variant class) and its position along the TP53 gene (x axis, annotated by domain). g. Variant induced shift in cell distributions. Density map of cell profiles in a UMAP embedding, comparing the density of cells overexpressing variants in each of 3 classes to either cells with variants in the WT-like class (grey, top) or unassigned cells (purple, bottom).


Extended Data Fig. 10 Variant-by-variant detailed representation of all analyses for KRAS variants.
a. Variant features. Number of cells (y axis, top), distribution of normalized variant barcode expression (y axis, middle; red: variants with a fold-change greater than 1.5) and sc-eVIP scores (y axis, bottom; black: significant scores) for each variant (x axis), ordered as in Fig. 3a. Grey font: controls (synonymous and ExAC), red font: hotspot variants (positions 12, 13 and 61). b. Agreement with other data features. Top: Dependence of cell line growth on KRAS (y axis), for cell lines (dots) categorized by their KRAS genotype status (x axis). Gray: wildtype KRAS, red: missense KRAS variants. For KRAS-WT cell lines, the boxplot is based on n=660 cell lines, and shows the median, the 25% and 75% quartiles, additional 1.5 interquartile ranges and the most extreme values in the data. Middle: Growth in low attachment of HA1E cells (z-score, color bar), or GILA score, for each variant (columns, ordered as in Fig. 3a) at 7 and 14 days. Bottom: Mutation prevalence (log2(counts+1) of variant occurrences) in the COSMIC database (top) and a pan-cancer curated set (bottom), for each variant. c. Gene programs association with variants. Top: Difference (dot color) in mean program score (top) or mean PC score (bottom) between a variant (columns) and WT overexpressing cells and the significance of this difference (dot size, -log10(adj. p-value, Benjamini-Hochberg procedure), two-sided Kolmogorov-Smirnov test, Methods) for each gene program (top, rows, by clustering genes, Methods), or each of the top 10 PCs (bottom, rows). Colored border: BH FDR<10%. d,e. Relation of variants to different clusters and cell cycle phases. Left: Proportion of cells (bar height) in each cell cluster (d) or cell cycle phase (e) (rows) derived for each variant (columns), annotated at the top with significance from a chi-square test comparing the cell state distribution of each variant with that of WT overexpressing cells (-log10(adj. p-value, Benjamini-Hochberg procedure)). Right: UMAP embedding of single-cell profiles, colored by cell clusters (d) or cell cycle phase (e). f. Relation of variants to KRAS protein structure. sc-eVIP scores (y axis) of each variant (dot, colored by the variant class) and its position along the KRAS gene (x axis, annotated by domain). g. Variant induced shift in cell distributions. Density map of cell profiles in a UMAP embedding, comparing the density of cells overexpressing variants in each of 3 classes to either cells overexpressing variants in the WT-like group (grey, top) or unassigned cells (purple, bottom).
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Reporting Summary.

Supplementary Table 1
Tab TP53. Properties of TP53 variants. The columns represent the name of the variant (â€œVariantâ€�), the gene in which the variant was engineered (â€œGeneâ€�), the position of the variant base in the ORF sequence (â€œPosition: base(s)â€�, comma-delimited if multiple bases have been changed to produce a given variant), the WT base(s) in the ORF (â€œFrom ORF base(s)â€�), the variant base(s) in the ORF at the position(s) given in â€œPosition: base(s)â€� (â€œTo ORF base(s)â€�), the position of the amino acid(s) affected by the variant (â€œPosition: amino acid(s)â€�, comma-delimited if multiple amino acids are changed), the WT amino acid at the provided position(s) (â€œFrom amino acid(s)â€�), the variant amino acid(s) at the provided position(s) (â€œTo amino acid(s)â€�), the WT codon(s) at the provided position(s) (â€œFrom ORF codon(s)â€�), and the variant codon(s) at the same position(s) (â€œTo ORF codon(s)â€�), whether the variant involves a single or multiple base change (â€œMutation typeâ€�), whether the variant is a synonymous control, ExAC or unknown (â€œControl statusâ€�), the associated variant barcode (â€œVariant barcodeâ€�), whether the variant passed quality control and is in the library (â€œLibrary synthesisâ€�), the number of cells per variant (â€œCells/variantâ€�), the average expression of the variant barcode in UMIs per 10,000 UMIs (â€œNormalized variant barcode counts (TP10K)â€�), Hotellingâ€™s T2 statistic representing the sc-eVIP score (â€œHotellingT2â€�), the q value (â€œHotellingT2.qâ€�), the functional class assigned to the variant (â€œVariant functional classâ€�), the variant prevalence in the pan-cancer dataset (â€œCount(pancan)â€�) and the variant prevalence in ExAC (â€œCount (ExAC)â€�), the frequency of the variant in cancer cohorts (â€œCount (IARC)â€�), growth z-scores from functional assays (â€œNutlin-3, TP53 WT growth (z score)â€�, â€œNutlin-3, TP53 null growth (z score)â€�, and â€œEtoposide, TP53 null growth (z score)â€�) and the sequence used in the experiment (â€œInsert sequenceâ€�).
Tab KRAS. Properties of KRAS variants. The columns represent the name of the variant (â€œVariantâ€�), the gene in which the variant was engineered (â€œGeneâ€�), the position of the variant base in the ORF sequence (â€œPosition: base(s)â€�, comma-delimited if multiple bases have been changed to produce a given variant), the WT base(s) in the ORF (â€œFrom ORF base(s)â€�), the variant base(s) in the ORF at the position(s) given in â€œPosition: base(s)â€� (â€œTo ORF base(s)â€�), the position of the amino acid(s) affected by the variant (â€œPosition: amino acid(s)â€�, comma-delimited if multiple amino acids are changed), the WT amino acid at the provided position(s) (â€œFrom amino acid(s)â€�), the variant amino acid(s) at the provided position(s) (â€œTo amino acid(s)â€�), the WT codon(s) at the provided position(s) (â€œFrom ORF codon(s)â€�), and the variant codon(s) at the same position(s) (â€œTo ORF codon(s)â€�), whether the variant involves a single or multiple base change (â€œMutation typeâ€�), whether the variant is a synonymous control, ExAC or unknown (â€œControl statusâ€�), whether the variant passed quality control and is in the library (â€œLibrary synthesisâ€�), the associated variant barcode (â€œVariant barcodeâ€�), the number of cells per variant (â€œCells/variantâ€�), the average expression of the variant barcode in UMIs per 10,000 UMIs (â€œNormalized variant barcode counts (TP10K)â€�), Hotellingâ€™s T2 statistic representing the sc-eVIP score (â€œHotellingT2â€�), the q value (â€œHotellingT2.qâ€�), the functional class assigned to the variant (â€œVariant functional classâ€�), the variant prevalence in the pan-cancer dataset (â€œCount(pancan)â€�), the variant prevalence in ExAC (â€œCount (ExAC)â€�), the variant frequency in cancer cohorts (â€œCount (COSMIC)â€�) and the sequence used in the experiment (â€œInsert sequenceâ€�).
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