Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins

Abstract

RNA-binding proteins (RBPs) play an essential role in regulating the function of RNAs in a cellular context, but our ability to control RBP activity in time and space is limited. Here, we describe the engineering of LicV, a photoswitchable RBP that binds to a specific RNA sequence in response to blue light irradiation. When fused to various RNA effectors, LicV allows for optogenetic control of RNA localization, splicing, translation and stability in cell culture. Furthermore, LicV-assisted CRISPR–Cas systems allow for efficient and tunable photoswitchable regulation of transcription and genomic locus labeling. These data demonstrate that the photoswitchable RBP LicV can serve as a programmable scaffold for the spatiotemporal control of synthetic RNA effectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Engineered photoswitchable RBP.
Fig. 2: Synthetic photoswitchable effectors for the optogenetic control of RNA metabolic processes.
Fig. 3: Highly efficient and tunable activation of transcription by the LA-CRISPR system.
Fig. 4: Optogenetic control of genomic locus labeling using the LA-CRISPR system.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. Cech, T. R. & Steitz, J. A. The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157, 77–94 (2014).

    CAS  PubMed  Google Scholar 

  2. Battich, N., Stoeger, T. & Pelkmans, L. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat. Methods 10, 1127–1133 (2013).

    CAS  PubMed  Google Scholar 

  3. Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Buxbaum, A. R., Haimovich, G. & Singer, R. H. In the right place at the right time: visualizing and understanding mRNA localization. Nat. Rev. Mol. Cell Biol. 16, 95–109 (2015).

    CAS  PubMed  Google Scholar 

  5. Jaschke, A. Genetically encoded RNA photoswitches as tools for the control of gene expression. FEBS Lett. 586, 2106–2111 (2012).

    PubMed  Google Scholar 

  6. You, M. & Jaffrey, S. R. Designing optogenetically controlled RNA for regulating biological systems. Ann. N.Y. Acad. Sci. 1352, 13–19 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tischer, D. & Weiner, O. D. Illuminating cell signalling with optogenetic tools. Nat. Rev. Mol. Cell Biol. 15, 551–558 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, L., Chen, C., Fan, X. & Tang, X. Photomodulating gene expression by using caged siRNAs with single-aptamer modification. Chembiochem 19, 1259–1263 (2018).

    CAS  PubMed  Google Scholar 

  9. Zhang, L. et al. Caged circular siRNAs for photomodulation of gene expression in cells and mice. Chem. Sci. 9, 44–51 (2018).

    CAS  PubMed  Google Scholar 

  10. Wu, L. et al. Caged circular antisense oligonucleotides for photomodulation of RNA digestion and gene expression in cells. Nucleic Acids Res. 41, 677–686 (2013).

    CAS  PubMed  Google Scholar 

  11. Ando, H., Furuta, T., Tsien, R. Y. & Okamoto, H. Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nat. Genet. 28, 317–325 (2001).

    CAS  PubMed  Google Scholar 

  12. Ando, H., Furuta, T. & Okamoto, H. Photo-mediated gene activation by using caged mRNA in zebrafish embryos. Methods Cell. Biol. 77, 159–171 (2004).

    CAS  PubMed  Google Scholar 

  13. Chaulk, S. G. & MacMillan, A. M. Caged RNA: photo-control of a ribozyme reaction. Nucleic Acids Res. 26, 3173–3178 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou, W. et al. Spatiotemporal control of CRISPR/Cas9 function in cells and zebrafish using light-activated guide RNA. Angew. Chem. Int. Ed. Engl. 59, 8998–9003 (2020).

  15. Wang, P. et al. Mapping spatial transcriptome with light-activated proximity-dependent RNA labeling. Nat. Chem. Biol. 15, 1110–1119 (2019).

    CAS  PubMed  Google Scholar 

  16. Benhalevy, D., Anastasakis, D. G. & Hafner, M. Proximity-CLIP provides a snapshot of protein-occupied RNA elements in subcellular compartments. Nat. Methods 15, 1074–1082 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gonzaga, E. R. Role of UV light in photodamage, skin aging, and skin cancer: importance of photoprotection. Am. J. Clin. Dermatol. 10, 19–24 (2009).

    PubMed  Google Scholar 

  18. Kawano, F., Shi, F. & Yazawa, M. Optogenetics: switching with red and blue. Nat. Chem. Biol. 13, 573–574 (2017).

    CAS  PubMed  Google Scholar 

  19. Pichon, X. et al. RNA binding protein/RNA element interactions and the control of translation. Curr. Protein Pept. Sci. 13, 294–304 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Abil, Z., Denard, C. A. & Zhao, H. Modular assembly of designer PUF proteins for specific post-transcriptional regulation of endogenous RNA. J. Biol. Eng. 8, 7 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Weber, A. M. et al. A blue light receptor that mediates RNA binding and translational regulation. Nat. Chem. Biol. 15, 1085–1092 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamada, M., Nagasaki, S. C., Ozawa, T. & Imayoshi, I. Light-mediated control of gene expression in mammalian cells. Neurosci. Res. 152, 66–77 (2020).

    CAS  PubMed  Google Scholar 

  23. Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu, X. et al. A single-component optogenetic system allows stringent switch of gene expression in yeast cells. ACS Synth. Biol. 7, 2045–2053 (2018).

    CAS  PubMed  Google Scholar 

  25. Chen, X. et al. An extraordinary stringent and sensitive light-switchable gene expression system for bacterial cells. Cell Res. 26, 854–857 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. Wang, X., Chen, X. & Yang, Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods 9, 266–269 (2012).

    CAS  PubMed  Google Scholar 

  27. Li, X. et al. A single-component light sensor system allows highly tunable and direct activation of gene expression in bacterial cells. Nucleic Acids Res. 48, e33 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Motta-Mena, L. B. et al. An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat. Chem. Biol. 10, 196–202 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, X. et al. Synthetic dual-input mammalian genetic circuits enable tunable and stringent transcription control by chemical and light. Nucleic Acids Res. 44, 2677–2690 (2016).

    PubMed  Google Scholar 

  30. Graille, M. et al. Activation of the LicT transcriptional antiterminator involves a domain swing/lock mechanism provoking massive structural changes. J. Biol. Chem. 280, 14780–14789 (2005).

    CAS  PubMed  Google Scholar 

  31. Zoltowski, B. D. et al. Conformational switching in the fungal light sensor Vivid. Science 316, 1054–1057 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. van Tilbeurgh, H., Le Coq, D. & Declerck, N. Crystal structure of an activated form of the PTS regulation domain from the LicT transcriptional antiterminator. EMBO J. 20, 3789–3799 (2001).

    PubMed  PubMed Central  Google Scholar 

  33. Lukinavicius, G. et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5, 132–139 (2013).

    CAS  PubMed  Google Scholar 

  34. Mie, M., Naoki, T., Uchida, K. & Kobatake, E. Development of a split SNAP-tag protein complementation assay for visualization of protein-protein interactions in living cells. Analyst 137, 4760–4765 (2012).

    CAS  PubMed  Google Scholar 

  35. Yang, Y., Declerck, N., Manival, X., Aymerich, S. & Kochoyan, M. Solution structure of the LicT–RNA antitermination complex: CAT clamping RAT. EMBO J. 21, 1987–1997 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wei, H. & Wang, Z. Engineering RNA-binding proteins with diverse activities. Wiley Interdiscip. Rev. RNA 6, 597–613 (2015).

    CAS  PubMed  Google Scholar 

  37. Zoltowski, B. D., Vaccaro, B. & Crane, B. R. Mechanism-based tuning of a LOV domain photoreceptor. Nat. Chem. Biol. 5, 827–834 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, X. et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nat. Biotechnol. 37, 1287–1293 (2019).

    CAS  PubMed  Google Scholar 

  39. Zhao, Y. Y. et al. Expanding RNA binding specificity and affinity of engineered PUF domains. Nucleic Acids Res. 46, 4771–4782 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gross, J. D., Matsuo, H., Fletcher, M., Sachs, A. B. & Wagner, G. Interactions of the eukaryotic translation initiation factor eIF4E. Cold Spring Harb. Symp. Quant. Biol. 66, 397–402 (2001).

    CAS  PubMed  Google Scholar 

  41. Ulyanova, V., Vershinina, V. & Ilinskaya, O. Barnase and binase: twins with distinct fates. FEBS J. 278, 3633–3643 (2011).

    CAS  PubMed  Google Scholar 

  42. Choudhury, R., Tsai, Y. S., Dominguez, D., Wang, Y. & Wang, Z. Engineering RNA endonucleases with customized sequence specificities. Nat. Commun. 3, 1147 (2012).

    PubMed  Google Scholar 

  43. Knott, G. J. & Doudna, J. A. CRISPR–Cas guides the future of genetic engineering. Science 361, 866–869 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2015).

    CAS  PubMed  Google Scholar 

  45. Nihongaki, Y. et al. CRISPR–Cas9-based photoactivatable transcription systems to induce neuronal differentiation. Nat. Methods 14, 963–966 (2017).

    CAS  PubMed  Google Scholar 

  46. Zalatan, J. G. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339–350 (2015).

    CAS  PubMed  Google Scholar 

  47. Ma, H. et al. CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat. Methods 15, 928–931 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Qin, P. et al. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR–Cas9. Nat. Commun. 8, 14725 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ma, H. et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat. Biotechnol. 34, 528–530 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shao, S. et al. Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res. 44, e86 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bubeck, F. et al. Engineered anti-CRISPR proteins for optogenetic control of CRISPR–Cas9. Nat. Methods 15, 924–927 (2018).

    CAS  PubMed  Google Scholar 

  53. Nihongaki, Y., Yamamoto, S., Kawano, F., Suzuki, H. & Sato, M. CRISPR–Cas9-based photoactivatable transcription system. Chem. Biol. 22, 169–174 (2015).

    CAS  PubMed  Google Scholar 

  54. Nihongaki, Y., Otabe, T., Ueda, Y. & Sato, M. A split CRISPR–Cpf1 platform for inducible genome editing and gene activation. Nat. Chem. Biol. 15, 882–888 (2019).

    CAS  PubMed  Google Scholar 

  55. Ash, C., Dubec, M., Donne, K. & Bashford, T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci. 32, 1909–1918 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. Polstein, L. R. & Gersbach, C. A. A light-inducible CRISPR–Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11, 198–200 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR–Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).

    CAS  PubMed  Google Scholar 

  58. Richter, F. et al. Engineering of temperature- and light-switchable Cas9 variants. Nucleic Acids Res. 44, 10003–10014 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou, X. X. et al. A single-chain photoswitchable CRISPR–Cas9 architecture for light-inducible gene editing and transcription. ACS Chem. Biol. 13, 443–448 (2018).

    CAS  PubMed  Google Scholar 

  60. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Boersma, S. et al. Multi-color single-molecule imaging uncovers extensive heterogeneity in mRNA decoding. Cell 178, 458–472 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Song, W., Strack, R. L. & Jaffrey, S. R. Imaging bacterial protein expression using genetically encoded RNA sensors. Nat. Methods 10, 873–875 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Paige, J. S., Nguyen-Duc, T., Song, W. & Jaffrey, S. R. Fluorescence imaging of cellular metabolites with RNA. Science 335, 1194 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, Y. et al. Directing cellular information flow via CRISPR signal conductors. Nat. Methods 13, 938–944 (2016).

    CAS  PubMed  Google Scholar 

  65. Xu, X. & Qi, L. S. A CRISPR–dCas toolbox for genetic engineering and synthetic biology. J. Mol. Biol. 431, 34–47 (2019).

    CAS  PubMed  Google Scholar 

  66. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Z. Wang and M. Mao at CAS Key Lab for Computational Biology for technical advice and sharing the splicing reporter and PUF-based SFs. We thank Z. Xie at Tsinghua University for sharing dAsCpf1–VPR and dSaCas9–VPR constructs. We thank C. Wang at the State Key Laboratory of Bioreactor Engineering for technical advice. This research was supported by the National Key Research and Development Program of China (2019YFA0904800 and 2017YFA050400 to Y.Y.), NSFC (91857202, 32121005, 21937004, 31225008 and 31470833 to Y.Y. and 31600688 and 31971349 to X.C.), the Shanghai Science and Technology Commission (18JC1411900, 14XD1401400 and 16430723100 to Y.Y. and 19ZR1472800 to X.C.), the Shanghai Municipal Education Commission-Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism (2021 Sci & Tech 03-28) to Y.Y., X.C. and Y.Z., the Shanghai Rising-Star Program to X.C., the Young Elite Scientists Sponsorship Program by CAST to X.C., the State Key Laboratory of Bioreactor Engineering to Y.Y. and the Fundamental Research Funds for the Central Universities to Y.Y. and X.C.

Author information

Authors and Affiliations

Authors

Contributions

Concepts were conceived by Y.Y. and X.C. Y.Y., X.C., R.L. and J. Yang designed the experiments and analyzed the data. R.L. and Z. Zhao performed screening to obtain the light-switchable RBP. R.L., J. Yang, J. Yao and Z. Zhao performed plasmid construction and live-cell experiments. R.L. performed imaging experiments. J. Yang, Z. Zhao and W.H. performed LicV protein purification and in vitro characterization. N.S., Y.Z., S.Q., C.Z., Zeyi Zhang, Zhuo Zhang, H.C. and L.Z. gave technical support and conceptual advice. Y.Y. and X.C. wrote the manuscript.

Corresponding authors

Correspondence to Xianjun Chen or Yi Yang.

Ethics declarations

Competing interests

Y.Y., X.C., R.L. and J. Yang are named inventors of patent application number 202111024451.5. The remaining authors declare no competing interests.

Additional information

Peer review information Nature Biotechnology thanks Robert Campbell, Andres Jäschke and Barbara Di Ventura for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Notes 1 and 2.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–12.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Yang, J., Yao, J. et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol 40, 779–786 (2022). https://doi.org/10.1038/s41587-021-01112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-021-01112-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research