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            Abstract
Transposable elements (TEs) regulate diverse biological processes, from early development to cancer. Expression of young TEs is difficult to measure with next-generation, single-cell sequencing technologies because their highly repetitive nature means that short complementary DNA reads cannot be unambiguously mapped to a specific locus. Single CELl LOng-read RNA-sequencing (CELLO-seq) combines long-read single cell RNA-sequencing with computational analyses to measure TE expression at unique loci. We used CELLO-seq to assess the widespread expression of TEs in two-cell mouse blastomeres as well as in human induced pluripotent stem cells. Across both species, old and young TEs showed evidence of locus-specific expression with simulations demonstrating that only a small number of very young elements in the mouse could not be mapped back to the reference with high confidence. Exploring the relationship between the expression of individual elements and putative regulators revealed large heterogeneity, with TEs within a class showing different patterns of correlation and suggesting distinct regulatory mechanisms.
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                    Fig. 1: CELLO-seq overview and its ability to aid in the study of allelic and isoform expression.[image: ]


Fig. 2: CELLO-seq enables TE-derived isoform and TE expression analysis in single cells at single loci.[image: ]


Fig. 3: Simulations characterizing the mapping of young L1 in the mouse and human genome.[image: ]


Fig. 4: CELLO-seq enables the study of young TEs at unique loci.[image: ]
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                Data availability

              
              The datasets generated during the current study are available under ArrayExpress accession E-MTAB-9577. We analyzed two-cell RNA-seq data from GSE97778, GSE66390, GSE76687 and GSE71434; ATACâ€“seq from GSE76642 and GSE66390; H3K9me3 data from GSE97778; H3K4me3 from GSE73952, GSE76687 and GSE71434; H3K27me3 from GSE73952 and GSE76687; and whole-genome bisulfite data from GSE97778 and E-MTAB-9090. We analyzed hiPSC RNA-seq data from GSE47626 and GSE56568; H3K4me3, H3K9me3, H3K27me3 and whole-genome bisulfite data from GSE16265; and H3K4me3 from GSE16256.

            

Code availability

              
              For data analysis the code is available in the following GitHub repositories: https://github.com/MarioniLab/CELLOseq, https://github.com/MarioniLab/sarlacc and https://github.com/MarioniLab/long_read_simulations.
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Extended data

Extended Data Fig. 1 CELLO-seq library properties.
Boxplots of counts across the 50 highest expressed young L1 unique loci in mouse ES cells cultured in 2i medium measured by (a) ScNaUmi-seq or (b) CELLO-seq. (c) histogram of number of UMIs (y-axis) by UMI group size (x-axis) for 2-cell blastomeres CELLO-seq data sequenced on a MinION flow cell or Illumina platform. (d) Light field microscopy image of two-cell embryo blastomere isolation. Two-cell embryo (i) with zona pellucida; (ii) without zona pellucida; (iii) as single blastomeres. This experiment was repeated more than 20 times. Scale bar 25Î¼m. (e) bargraph of read numbers for mouse 2-cell embryo dataset (right) and human iPSCs (left). (f) density plot of number of molecules (y-axis) by length of mapped molecules (x-axis) for hiPSCs and mouse blastomeres. (g) scatter plot of number of reads (y-axis) versus number of genes in hiPSCs from Smart-seq2 libraries sequenced by Illumina. (h) schematic of sarlacc workflow. We demultiplexed samples by grouping barcodes with a Levenshtein distance below the grouping threshold. We performed pregrouping by mapping the reads to the relevant transcriptome. We grouped the reads by UMI sequence and error corrected the reads in the true UMI group, or by picking a random read from the UMI group in deduplication mode. For this study we used error corrected reads. (i) barplot of fraction of reads (y-axis) and their relative position on a transcript (x-axis) from the start or the end of the molecule depending on the gene length. (j) Scatter plot of short read (y-axis) versus long read (x-axis) gene expression depending on the length of the gene. (k) Scatter plot of ERCC concentration (y-axis) and ERCC molecules (x-axis) of mouse blastomere CELLO-seq data. (l) Scatter plot of ERCC concentration (y-axis) and ERCC molecules (x-axis) from mouse blastomere CELLO-seq libraries with Illumina sequencing. For J-L Pearson Correlation coefficient (R) and two-sided p-value shown.


Extended Data Fig. 2 Isoform analysis.
(a) expression of TE derived-isoforms in human iPSCs and mouse 2-cell data stratified by whether a repeat acts as a transcript end site (TES) or as a transcript start site (TSS). Mouse: TES (nâ€‰=â€‰353), TSS (nâ€‰=â€‰76). Human: TES (nâ€‰=â€‰537), TSS (nâ€‰=â€‰73). (B) number of TE derived-isoforms in hiPSCs and mouse blastomeres with repeat as TES or TSS. (c) Barplot of repeat family underlying repeat derived-isoforms in hiPSCs. (d) Barplot of repeat family underlying repeat derived-isoforms in mouse blastomeres. (e) frequency plot of number of repeats (x-axis) by age of TE (mya) (y-axis). TEs that mapped to hiPSCs (top), all repeats from human UCSC repeatmasker annotation (bottom). TEs are grouped by class and color-coded by family. (f) boxplots of age (mya) of TEs (y-axis) of young human L1s either detected or not detected in hiPSC dataset. detected: L1HS (nâ€‰=â€‰15), L1PA2 (nâ€‰=â€‰34), L1PA3 (nâ€‰=â€‰34), L1PA4 (nâ€‰=â€‰20), L1PA5 (nâ€‰=â€‰18), L1PA6 (nâ€‰=â€‰17), not detected: L1HS (nâ€‰=â€‰1692), L1PA2 (nâ€‰=â€‰5148), L1PA3 (nâ€‰=â€‰11194), L1PA4 (nâ€‰=â€‰12471), L1PA5 (nâ€‰=â€‰11735), L1PA6 (nâ€‰=â€‰6195). (g) boxplots of age (mya) of TEs (y-axis) of young mouse L1s either detected or not detected in mouse blastomeres. detected: L1MdA (nâ€‰=â€‰27), L1MdT (nâ€‰=â€‰44), L1MdF3 (nâ€‰=â€‰8), L1MdF2 (nâ€‰=â€‰43), L1MdGf (nâ€‰=â€‰1), L1MdF (nâ€‰=â€‰5), not detected: L1MdA (nâ€‰=â€‰16817), L1MdT (nâ€‰=â€‰23644), L1MdF3 (nâ€‰=â€‰16138), L1MdF2 (nâ€‰=â€‰64855), L1MdGf (nâ€‰=â€‰1079), L1MdF (nâ€‰=â€‰4011). The boxplots in A,F and G show the median, first and third quartiles as a box, and the whiskers indicate the most extreme data point within 1.5 lengths of the box.


Extended Data Fig. 3 Simulation of correct mapping of young L1 in mouse and human genome.
(a) bargraph showing the number of reads (y-axis) by the simulation type with either 1x or 10x coverage (x-axis), color-coded by alignment type with mapped = read at correct location after mapping with minimap2 to the genome, mismapped = read maps at wrong location, unmapped = read not mapped, unresolved = group has more than one molecule present and group cannot be resolved to a unique read. mouse (left), human (right). (b) bargraph of proportion of read group sizes (y-axis) by alignment type (x-axis), left showing 1x read coverage, right showing 10x read coverage. Color-coded by group size. mouse (top), human (bottom). (c) Stacked bargraph showing proportion of L1 elements (y-axis) by simulation type using 10x read coverage (x-axis), colored by specificity score, mouse (left), human (right). (d) Jitter plot of TE subfamily (y-axis) by TE age (million years ago) grouped by simulation type and coloured by % of mapped reads with yellow being 0% mapped and dark blue being 100% mapped. Mouse L1 top panel and human L1 bottom panel. Simulation type: perfect = perfect read identity, ONTâ€‰=â€‰ONT read identity, ONT 5x = ONT read identity with 5x coverage, sarlacc corrected 5x = ONT read identity score, 5x coverage with sarlacc error correction, sarlacc corrected 10x = ONT read identity score, 10x coverage with sarlacc error correction, sarlacc deduplicated 5x = ONT read identity score, 5x coverage with sarlacc deduplication by randomly choosing 1 read. PGâ€‰=â€‰perfect grouping.


Extended Data Fig. 4 UMI simulations.
(a) Distribution of Levenshtein distance between randomly simulated UMI (x-axis) based on UMI length with RYN pattern (left) or NNN pattern (right). Light grey bar shows distance threshold for grouping of reads by UMIs used for most short read UMIs or CELLO-seq. (b) Line graph of fraction of pure groups (y-axis) by Levenshtein distance (x-axis) by UMI group, either with perfect read identity or ONT read identity. On the left is the line graph of UMI simulations without any pregrouping by mapping. On the right the line graph is UMI simulation where pregrouping was performed by random assignment of true UMI sequences into groups of 100 unique UMIs. (c) distribution plot of UMI group sizes (x-axis) by Levenshtein distance threshold (y-axis) based on UMI length, with perfect ONT read identity and no pregrouping (left) or pregrouping (right).


Extended Data Fig. 5 CELLO-seq to study locus specific TE expression.
(a) Heatmap of expression of all SINE elements in mouse blastomeres, with rows clustered by SINE family and colour-coded by TE subfamily. (b) Heatmap of expression of full-length (>5000nt) elements in mouse blastomeres, with rows clustered by TE family and color-coded by TE subfamily. (c) Heatmap of logcounts of highest expressed (mean expression > 1) elements in hiPSCs with rows clustered by TE subfamily. (d) Boxplot of percentage of reads mapped to TEs or TE families in CELLO-seq mouse 2-cells. P-value: L1Md to SINE B1/B2â€‰=â€‰0.004998, L1Md to MERVLâ€‰=â€‰0.004998, 2-sided Wilcoxon rank sum test. nâ€‰=â€‰6 cells. (e) Boxplot of percentage of TEs expressed by number of TEs in the genome in CELLO-seq mouse blastomeres. p-value: repeats to L1Mdâ€‰=â€‰0.0022, repeats to SINE B1/B2â€‰=â€‰0.0022, repeats to MERVLâ€‰=â€‰0.0022, 2-sided Wilcoxon rank sum test. nâ€‰=â€‰6 cells. (f) boxplot of number of MERVL elements expressed in each cell of CELLO-seq 2-cells compared to published short read data. CELLO-seq (nâ€‰=â€‰6 cells), bulk (nâ€‰=â€‰7 independent experiments). (g) boxplot of number of HERVH-int elements expressed in each cell of CELLO-seq compared to published short read data. CELLO-seq (nâ€‰=â€‰96 cells), bulk (nâ€‰=â€‰10 independent experiments). (h) expression, methylation, ATAC-seq and ChIP-seq of MERVL elements with read counts in CELLO-seq libraries compared to MERVL elements with no counts in CELLO-seq libraries. expressed (nâ€‰=â€‰355 MERVLs), not expressed (nâ€‰=â€‰41 MERVLs), datasets: ATAC-seq (nâ€‰=â€‰1), DNA methylation (nâ€‰=â€‰2), H3K27me3 (nâ€‰=â€‰1), H3K4me3 (nâ€‰=â€‰1), H3K9me3 (nâ€‰=â€‰1), RNAseq (nâ€‰=â€‰3). (i) expression, methylation, ATAC-seq and ChIP-seq data of HERV-int elements with read counts in CELLO-seq libraries compared to HERVH-int with no counts in CELLO-seq libraries. expressed (nâ€‰=â€‰14 HERVH-ints), not expressed (nâ€‰=â€‰110 HERVH-ints), each dataset (nâ€‰=â€‰1), RNAseq (nâ€‰=â€‰3). The boxplots shown in D-I show the median, first and third quartiles as a box, and the whiskers indicate the most extreme data point within 1.5 lengths of the box.


Extended Data Fig. 6 CELLO-seq to study locus specific young L1 expression.
(a) DNA methylation of L1Md elements expressed in CELLO-seq mouse blastomeres. Methylation level of L1Mds across preimplantation development and in spermatogonia. Bold: L1s with full-length ORF by ORFfinder. (b) Methylation level of L1Mds across early development in human iPS cells as well as in tumour and normal tissue. Bold: L1s with full-length ORF by ORFfinder, underlined: L1s known to be mobile according to previous publications. (c-d) genome browser view of CELLO-seq reads overlapping young L1s (c) in mouse or (d) human. Arrows show direction of transcription of each L1 element.
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