Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optimization of AsCas12a for combinatorial genetic screens in human cells

Abstract

Cas12a RNA-guided endonucleases are promising tools for multiplexed genetic perturbations because they can process multiple guide RNAs expressed as a single transcript, and subsequently cleave target DNA. However, their widespread adoption has lagged behind Cas9-based strategies due to low activity and the lack of a well-validated pooled screening toolkit. In the present study, we describe the optimization of enhanced Cas12a from Acidaminococcus (enAsCas12a) for pooled, combinatorial genetic screens in human cells. By assaying the activity of thousands of guides, we refine on-target design rules and develop a comprehensive set of off-target rules to predict and exclude promiscuous guides. We also identify 38 direct repeat variants that can substitute for the wild-type sequence. We validate our optimized AsCas12a toolkit by screening for synthetic lethalities in OVCAR8 and A375 cancer cells, discovering an interaction between MARCH5 and WSB2. Finally, we show that enAsCas12a delivers similar performance to Cas9 in genome-wide dropout screens but at greatly reduced library size, which will facilitate screens in challenging models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optimization of AsCas12a for pooled screens.
Fig. 2: On-target design rules for enCas12a.
Fig. 3: Prediction of off-target activity for AsCas12a.
Fig. 4: Development of alternative DR sequences for multiplexing with AsCas12a.
Fig. 5: Validation of AsCas12a performance with synthetic lethal gene pairs.
Fig. 6: Combinatorial screen identifies a new synthetic lethality in apoptotic genes.
Fig. 7: Genome-wide libraries for enCas12a.

Similar content being viewed by others

Data availability

The read counts for all screening data and subsequent analyses are provided as Supplementary Data and are available on the Sequence Read Archive, accession no. SRP228317.

Code availability

All customized code used for analysis and notebooks is available on GitHub: https://github.com/PeterDeWeirdt.

References

  1. Doench, J. G. Am I ready for CRISPR? A user’s guide to genetic screens. Nat. Rev. Genet. 19, 67–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Han, K. et al. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat. Biotechnol. 35, 463–474 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hegde, M., Strand, C., Hanna, R. E. & Doench, J. G. Uncoupling of sgRNAs from their associated barcodes during PCR amplification of combinatorial CRISPR screens. PLoS ONE 13, e0197547 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hill, A. J. et al. On the design of CRISPR-based single-cell molecular screens. Nat. Methods 15, 271–274 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, H. K. et al. In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat. Methods 14, 153–159 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Kim, H. K. et al. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nat. Biotechnol. 36, 239–241 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Esther Tak, Y. et al. Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors. Nat. Methods 14, 1163–1166 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Li, X. et al. Base editing with a Cpf1-cytidine deaminase fusion. Nat. Biotechnol. 36, 324–327 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Kleinstiver, B. P. et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276–282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tu, M. et al. A ‘new lease of life’: FnCpf1 possesses DNA cleavage activity for genome editing in human cells. Nucleic Acids Res. 45, 11295–11304 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tóth, E. et al. Mb- and FnCpf1 nucleases are active in mammalian cells: activities and PAM preferences of four wild-type Cpf1 nucleases and of their altered PAM specificity variants. Nucleic Acids Res. 46, 10272–10285 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Stegmeier, F., Hu, G., Rickles, R. J., Hannon, G. J. & Elledge, S. J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl Acad. Sci. USA 102, 13212–13217 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zetsche, B. et al. Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31–34 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Campa, C. C., Weisbach, N. R., Santinha, A. J., Incarnato, D. & Platt, R. J. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat. Methods 16, 887–893 (2019).

  17. Chow, R. D. et al. In vivo profiling of metastatic double knockouts through CRISPR-Cpf1 screens. Nat. Methods 16, 405–408 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, J. et al. Pooled library screening with multiplexed Cpf1 library. Nat. Commun. 10, 3144 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hart, T., Brown, K. R., Sircoulomb, F., Rottapel, R. & Moffat, J. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol. Syst. Biol. 10, 733 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet. 48, 1779–1784 (2017).

    Article  CAS  Google Scholar 

  21. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Najm, F. J. et al. Orthologous CRISPR–Cas9 enzymes for combinatorial genetic screens. Nat. Biotechnol. 36, 179 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Liu, P. et al. Enhanced Cas12a editing in mammalian cells and zebrafish. Nucleic Acids Res. 47, 4169–4180 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kleinstiver, B. P. et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat. Biotechnol. 34, 869–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, D. et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat. Biotechnol. 34, 863–868 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perez, A. R. et al. GuideScan software for improved single and paired CRISPR guide RNA design. Nat. Biotechnol. 35, 347 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tycko, J. et al. Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements. Nat. Commun. 10, 4063 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. van Delft, M. F. et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10, 389–399 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Teng, F. et al. Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds. Genome Biol. 20, 15 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moriarity, B. S. et al. Simple and efficient methods for enrichment and isolation of endonuclease modified cells. PLoS ONE 9, e96114 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Agudelo, D. et al. Marker-free coselection for CRISPR-driven genome editing in human cells. Nat. Methods 14, 615–620 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Aguirre, A. J. et al. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov. 6, 914–929 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Munoz, D. M. et al. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov. 6, 900–913 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, Y. et al. Engineering cell signaling using tunable CRISPR-Cpf1-based transcription factors. Nat. Commun. 8, 2095 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Shen, J. P. et al. Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions. Nat. Methods 14, 573–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. DeWeirdt, P. C. et al. Genetic screens in isogenic mammalian cell lines without single cell cloning. Nat. Commun. 11, 752 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, E. et al. A network of human functional gene interactions from knockout fitness screens in cancer cells. Life Sci. Alliance 2, e201800278 (2019).

  40. Pan, J. et al. Interrogation of mammalian protein complex structure, function, and membership using genome-scale fitness screens. Cell Syst. 6, 555–568.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wainberg, M. et al. A genome-wide almanac of co-essential modules assigns function to uncharacterized genes. Preprint at bioRxiv https://doi.org/10.1101/827071 (2019).

  42. Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, T. et al. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. Cell 168, 890–903.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tzelepis, K. et al. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep. 17, 1193–1205 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hanna, R. E. & Doench, J. G. A case of mistaken identity. Nat. Biotechnol. 36, 802–804 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Horlbeck, M. A. et al. Mapping the genetic landscape of human cells. Cell 174, 953–967.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dede, M., McLaughlin, M., Kim, E. & Hart, T. Multiplex enCas12a screens show functional buffering by paralogs is systematically absent from genome-wide CRISPR/Cas9 knockout screens. Preprint at bioRxiv https://doi.org/10.1101/2020.05.18.102764 (2020).

  48. Sanson, K. R. et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat. Commun. 9, 5416 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Goodale, B. Fritchman and X. Yang for producing guide libraries and lentivirus; O. Bare, M. Macaluso and Y. Lee for logistics support; C. Petersen for assistance with screens; M. Greene, A. Brown, D. Alan, M. Tomko and T. Green for software engineering support; the Broad Institute Genomics Platform Walk-up Sequencing group for Illumina sequencing; the Broad Institute Flow Cytometry Facility for assistance with gating strategy; and the Functional Genomics Consortium for funding support.

Author information

Authors and Affiliations

Authors

Contributions

X.P., A.H. and J.G.D. conceived the study. J.G.D. supervised the project. T.T. and X.P. generated the 2xNLS-Cas12a construct. B.P.K. and J.K.J. provided the sequence of enAsCas12a in advance of publication. M.H., P.C.D. and R.E.H. designed the libraries. K.R.S., A.K.S., C.S., S.M.B., M.N.F. and A.L.G. executed the genetic screens. P.C.D., M.H., K.R.S. and J.G.D. performed the analyses. P.C.D., A.K.S., K.R.S. and M.H. created the visualizations. P.C.D. and M.H. curated the data. P.C.D., A.K.S., K.R.S., R.E.H. and J.G.D. wrote the manuscript.

Corresponding author

Correspondence to John G. Doench.

Ethics declarations

Competing interests

J.G.D. consults for Foghorn Therapeutics, Maze Therapeutics, Merck, Agios and Pfizer; he also consults for and has equity in Tango Therapeutics. B.P.K. is a scientific advisor to Avectas. T.T., X.P. and A.H. are employees of Tango Therapeutics. J.K.J. has financial interests in Beam Therapeutics, Editas Medicine, Excelsior Genomics, Pairwise Plants, Poseida Therapeutics, Transposagen Biopharmaceuticals and Verve Therapeutics (formerly known as Endcadia); his interests were reviewed and are managed by Massachusetts General Hospital and Partners HealthCare in accordance with their conflict-of-interest policies. He is a member of the Board of Directors of the American Society of Gene and Cell Therapy. J.K.J. and B.P.K. are co-inventors on various patents and patent applications that describe gene editing and epigenetic editing technologies, including the enhanced Cas12a variant used in the present study. A patent application has been filed on the basis of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Supplementary Tables 1–3 and Supplementary Note 1.

Reporting Summary

Supplementary Data 1

Read counts from on-target tiling libraries for comparing the performance of 1xNLS-Cas12a, 2xNLS-Cas12a, enCas12a and SpCas9.

Supplementary Data 2

Read counts for the PAM tiling library to define the preferences for enCas12a.

Supplementary Data 3

Read counts from mismatch libraries for off-target effects of 2xNLS-Cas12a and enCas12a.

Supplementary Data 4

Read counts from assays to identify alternative DR sequences.

Supplementary Data 5

Read counts for the synthetic lethality library screened with 2xNLS-Cas12a and enCas12a.

Supplementary Data 6

Read counts for the apoptosis combinatorial library screened with enCas12a.

Supplementary Data 7

Read counts for the Humagne set A library.

Supplementary Data 8

Read counts for the Humagne set B library.

Supplementary Data 9

Read counts for the Brunello library.

Supplementary Data 10

Precision-recall analysis for essential genes for Cas9 and Cas12a genome-wide libraries. First tab contains guide-level recall at 95% precision; second tab contains gene-level recall at 95% precision after averaging together all guides targeting the same gene. For the Brunello and Humagne screens, recall is calculated both for individual replicates and for merged replicates. For the Avana dataset, we used the cell lines that had exactly 2 replicates (207 of 341). For GeCKOv2, we used the cell lines that had exactly 4 replicates (29 of 33).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeWeirdt, P.C., Sanson, K.R., Sangree, A.K. et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat Biotechnol 39, 94–104 (2021). https://doi.org/10.1038/s41587-020-0600-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-020-0600-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research