Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dispersion-assisted high-dimensional photodetector

Abstract

Intensity, polarization and wavelength are intrinsic characteristics of light. Characterizing light with arbitrarily mixed information on polarization and spectrum is in high demand1,2,3,4. Despite the extensive efforts in the design of polarimeters5,6,7,8,9,10,11,12,13,14,15,16,17,18 and spectrometers19,20,21,22,23,24,25,26,27, concurrently yielding high-dimensional signatures of intensity, polarization and spectrum of the light fields is challenging and typically requires complicated integration of polarization- and/or wavelength-sensitive elements in the space or time domains. Here we demonstrate that simple thin-film interfaces with spatial and frequency dispersion can project and tailor polarization and spectrum responses in the wavevector domain. By this means, high-dimensional light information can be encoded into single-shot imaging and deciphered with the assistance of a deep residual network. To the best of our knowledge, our work not only enables full characterization of light with arbitrarily mixed full-Stokes polarization states across a broadband spectrum with a single device and a single measurement but also presents comparable, if not better, performance than state-of-the-art single-purpose miniaturized polarimeters or spectrometers. Our approach can be readily used as an alignment-free retrofit for the existing imaging platforms, opening up new paths to ultra-compact and high-dimensional photodetection and imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Existing approaches versus our high-dimensional photodetector.
Fig. 2: Design of our high-dimensional photodetector.
Fig. 3: Intelligent detection of polarization and spectrum.
Fig. 4: High-dimensional photodetector and imager.

Similar content being viewed by others

Data availability

The data that support the plots in this paper are available from the corresponding authors. Source data are provided with this paper.

Code availability

The generic code to generate the original data for all relevant tasks of this study is freely available at https://github.com/WeianHuang23/Dispersion-assisted_High-dimensional_Photodetector.git.

References

  1. Yuan, S. et al. Geometric deep optical sensing. Science 379, eade1220 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Liodakis, I. et al. Polarized blazar X-rays imply particle acceleration in shocks. Nature 611, 677–681 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kokhanovsky, A. A. Light Scattering Reviews (Springer, 2016).

  4. Shaw, J. A. Degree of linear polarization in spectral radiances from water-viewing infrared radiometers. Appl. Opt. 38, 3157–3165 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Pors, A., Nielsen, M. G. & Bozhevolnyi, S. I. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2, 716–723 (2015).

    Article  ADS  CAS  Google Scholar 

  7. Jung, M. et al. Polarimetry using graphene-integrated anisotropic metasurfaces. ACS Photonics 5, 4283–4288 (2018).

    Article  CAS  Google Scholar 

  8. Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wei, J. et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat. Commun. 11, 6404 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wei, J., Xu, C., Dong, B., Qiu, C.-W. & Lee, C. Mid-infrared semimetal polarization detectors with configurable polarity transition. Nat. Photon. 15, 614–621 (2021).

    Article  ADS  CAS  Google Scholar 

  11. Fang, C., Li, J., Zhou, B. & Li, D. Self-powered filterless on-chip full-Stokes polarimeter. Nano Lett. 21, 6156–6162 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Dai, M. et al. On-chip mid-infrared photothermoelectric detectors for full-Stokes detection. Nat. Commun. 13, 4560 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rubin, N. A. et al. Imaging polarimetry through metasurface polarization gratings. Opt. Express 30, 9389–9412 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Song, I. et al. Helical polymers for dissymmetric circularly polarized light imaging. Nature 617, 92–99 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Wei, J. et al. Geometric filterless photodetectors for mid-infrared spin light. Nat. Photon. 17, 171–178 (2023).

    ADS  CAS  Google Scholar 

  16. Wan, L. et al. Sensitive near-infrared circularly polarized light detection via non-fullerene acceptor blends. Nat. Photon. 17, 649–655 (2023).

    Article  ADS  CAS  Google Scholar 

  17. Li, L. W., Rubin, N. A., Juhl, M., Park, J.-S. & Capasso, F. Evaluation and characterization of imaging polarimetry through metasurface polarization gratings. Appl. Opt. 62, 1704–1722 (2023).

    Article  ADS  PubMed  Google Scholar 

  18. Ma, C. et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604, 266–272 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  21. Yang, Z. et al. Single-nanowire spectrometers. Science 365, 1017–1020 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Wang, Z. et al. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nat. Commun. 10, 1020 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, Z., Albrow-Owen, T., Cai, W. & Hasan, T. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Yuan, S., Naveh, D., Watanabe, K., Taniguchi, T. & Xia, F. A wavelength-scale black phosphorus spectrometer. Nat. Photon. 15, 601–607 (2021).

    Article  ADS  CAS  Google Scholar 

  25. Yoon, H. H. et al. Miniaturized spectrometers with a tunable van der Waals junction. Science 378, 296–299 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Deng, W. et al. Electrically tunable two-dimensional heterojunctions for miniaturized near-infrared spectrometers. Nat. Commun. 13, 4627 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tua, D. et al. Imaging-based intelligent spectrometer on a plasmonic rainbow chip. Nat. Commun. 14, 1902 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schweiger, A. K. & Laliberte, E. Plant beta-diversity across biomes captured by imaging spectroscopy. Nat. Commun. 13, 2767 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chan, W. P. et al. A high-throughput multispectral imaging system for museum specimens. Commun. Biol. 5, 1318 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shaltout, A., Liu, J., Kildishev, A. & Shalaev, V. Photonic spin Hall effect in gap–plasmon metasurfaces for on-chip chiroptical spectroscopy. Optica 2, 860–863 (2015).

    Article  ADS  CAS  Google Scholar 

  31. Chen, W. T. et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology 27, 224002 (2016).

    Article  ADS  PubMed  Google Scholar 

  32. Ding, F., Pors, A., Chen, Y., Zenin, V. A., & Bozhevolnyi, S. I. Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces. ACS Photonics 4, 943–949 (2017).

    Article  CAS  Google Scholar 

  33. Altaqui, A. et al. Mantis shrimp-inspired organic photodetector for simultaneous hyperspectral and polarimetric imaging. Sci. Adv. 7, eabe3196 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ni, Y. et al. Computational spectropolarimetry with a tunable liquid crystal metasurface. eLight 2, 23 (2022).

    Article  Google Scholar 

  35. He, K., Zhang, X., Ren, S. & Sun, J. in Proc. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (IEEE, 2016).

  36. Shastri, K. & Monticone, F. Nonlocal flat optics. Nat. Photon. 17, 36–47 (2022).

    Article  ADS  Google Scholar 

  37. Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  38. Song, J.-H., van de Groep, J., Kim, S. J. & Brongersma, M. L. Non-local metasurfaces for spectrally decoupled wavefront manipulation and eye tracking. Nat. Nanotechnol. 16, 1224–1230 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Niu, S. et al. Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photon. 12, 392–396 (2018).

    Article  ADS  CAS  Google Scholar 

  40. Biswas, S., Grajower, M. Y., Watanabe, K., Taniguchi, T. & Atwater, H. A. Broadband electro-optic polarization conversion with atomically thin black phosphorus. Science 374, 448–453 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Chen, X. et al. Solution-processed inorganic perovskite crystals as achromatic quarter-wave plates. Nat. Photon. 15, 813–816 (2021).

    Article  ADS  Google Scholar 

  42. Fan, S. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

    Article  ADS  Google Scholar 

  43. Chen, Y. et al. Observation of intrinsic chiral bound states in the continuum. Nature 613, 474–478 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Cai, G. et al. Compact angle-resolved metasurface spectrometer. Nat. Mater. 23, 71–78 (2024).

  45. Kumar, P. et al. Photonically active bowtie nanoassemblies with chirality continuum. Nature 615, 418–424 (2023).

  46. Tang, H. et al. Experimental probe of twist angle–dependent band structure of on-chip optical bilayer photonic crystal. Sci. Adv. 9, eadh8498 (2023).

Download references

Acknowledgements

W.L. and C.J. are supported by the National Natural Science Foundation of China (grant nos. 62134009, 62121005 and 62305328). C.-W.Q. is supported by the Competitive Research Program Award (NRF-CRP22-2019-0006 and CRP30-2023-0035) from the National Research Foundation (NRF), Prime Minister’s Office Singapore and by a grant (A-0005947-16-00) from Advanced Research and Technology Innovation Centre (ARTIC), National University of Singapore. C.G. acknowledges the support from CAS Youth Innovation Promotion Association Project (no. 20211214). We thank T. Bai, S. Guo, J. Yang and M. Xiao for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

W.L. conceived the project. Y.F., C.J., F.Z. and W.L. performed the theoretical calculations and design. Y.F. performed the measurements. W.H. developed the program for applying the neural network. Y.F., C.J. and Y.A. prepared the samples. W.L., C.J., Y.F., W.H., F.Z., X.L., C.-W.Q. and Y.K. discussed and analysed the results. W.L., C.-W.Q., Y.K., C.J. and C.G. wrote and revised the manuscript. W.L., C.-W.Q. and Y.K. supervised the project.

Corresponding authors

Correspondence to Chunqi Jin, Cheng-Wei Qiu or Wei Li.

Ethics declarations

Competing interests

W.L., Y.F., C.J., W.H., F.Z. and C.-W.Q. are inventors of a patent application that covers the concept and implementation of the dispersion-assisted high-dimensional photodetector and its applications. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24 and Notes 1–19.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Huang, W., Zhu, F. et al. Dispersion-assisted high-dimensional photodetector. Nature (2024). https://doi.org/10.1038/s41586-024-07398-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-024-07398-w

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing