Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Creation of memory–memory entanglement in a metropolitan quantum network

Abstract

Towards realizing the future quantum internet1,2, a pivotal milestone entails the transition from two-node proof-of-principle experiments conducted in laboratories to comprehensive multi-node set-ups on large scales. Here we report the creation of memory–memory entanglement in a multi-node quantum network over a metropolitan area. We use three independent memory nodes, each of which is equipped with an atomic ensemble quantum memory3 that has telecom conversion, together with a photonic server where detection of a single photon heralds the success of entanglement generation. The memory nodes are maximally separated apart for 12.5 kilometres. We actively stabilize the phase variance owing to fibre links and control lasers. We demonstrate concurrent entanglement generation between any two memory nodes. The memory lifetime is longer than the round-trip communication time. Our work provides a metropolitan-scale testbed for the evaluation and exploration of multi-node quantum network protocols and starts a stage of quantum internet research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Network layout and experimental set-up.
Fig. 2: Weak-field phase and frequency stabilization.
Fig. 3: Entanglement between a pair of distant nodes.
Fig. 4: Concurrent entanglement generation in the network.

Similar content being viewed by others

Data availability

Source data for the plots is archived on Zenodo at https://doi.org/10.5281/zenodo.8149009 (ref. 49).

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  3. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    Article  ADS  Google Scholar 

  4. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  Google Scholar 

  5. Jiang, L., Taylor, J., Sørensen, A. & Lukin, M. Distributed quantum computation based on small quantum registers. Phys. Rev. A 76, 062323 (2007).

    Article  ADS  Google Scholar 

  6. Gottesman, D., Jennewein, T. & Croke, S. Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett. 109, 070503 (2012).

    Article  ADS  PubMed  Google Scholar 

  7. Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).

    Article  Google Scholar 

  8. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Chou, C.-W. et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Lago-Rivera, D., Grandi, S., Rakonjac, J. V., Seri, A. & de Riedmatten, H. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature 594, 37–40 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Liu, X. et al. Heralded entanglement distribution between two absorptive quantum memories. Nature 594, 41–45 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218–223 (2016).

    Article  CAS  Google Scholar 

  20. Stockill, R. et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett. 119, 010503 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Jing, B. et al. Entanglement of three quantum memories via interference of three single photons. Nat. Photon. 13, 210–213 (2019).

    Article  ADS  CAS  Google Scholar 

  22. Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Hermans, S. L. N. et al. Qubit teleportation between non-neighbouring nodes in a quantum network. Nature 605, 663–668 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumar, P. Quantum frequency conversion. Opt. Lett. 15, 1476–1478 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Bock, M. et al. High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion. Nat. Commun. 9, 1998 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Ikuta, R. et al. Polarization insensitive frequency conversion for an atom–photon entanglement distribution via a telecom network. Nat. Commun. 9, 1997 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Van Leent, T. et al. Long-distance distribution of atom–photon entanglement at telecom wavelength. Phys. Rev. Lett. 124, 010510 (2020).

    Article  PubMed  Google Scholar 

  28. Tchebotareva, A. et al. Entanglement between a diamond spin qubit and a photonic time-bin qubit at telecom wavelength. Phys. Rev. Lett. 123, 063601 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Krutyanskiy, V. et al. Light–matter entanglement over 50 km of optical fibre. npj Quantum Inf. 5, 72 (2019).

    Article  ADS  Google Scholar 

  30. Luo, X.-Y. et al. Postselected entanglement between two atomic ensembles separated by 12.5 km. Phys. Rev. Lett. 129, 050503 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. van Leent, T. et al. Entangling single atoms over 33 km telecom fibre. Nature 607, 69–73 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. Yu, Y. et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature 578, 240–245 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Bao, X.-H. et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat. Phys. 8, 517–521 (2012).

    Article  CAS  Google Scholar 

  34. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Zhou, L., Lin, J., Jing, Y. & Yuan, Z. Twin-field quantum key distribution without optical frequency dissemination. Nat. Commun. 14, 928 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang, C.-W. et al. Deterministic measurement of a Rydberg superatom qubit via cavity-enhanced single-photon emission. Optica 9, 853–858 (2022).

    Article  ADS  CAS  Google Scholar 

  37. Tan, S. M., Walls, D. F. & Collett, M. J. Nonlocality of a single photon. Phys. Rev. Lett. 66, 252–255 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Li, L., Dudin, Y. O. & Kuzmich, A. Entanglement between light and an optical atomic excitation. Nature 498, 466–469 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Ma, X.-s et al. Experimental delayed-choice entanglement swapping. Nat. Phys. 8, 479–484 (2012).

    Article  Google Scholar 

  40. Wengerowsky, S., Joshi, S. K., Steinlechner, F., Hübel, H. & Ursin, R. An entanglement-based wavelength-multiplexed quantum communication network. Nature 564, 225–228 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Choi, K. S., Goban, A., Papp, S. B., Van Enk, S. J. & Kimble, H. J. Entanglement of spin waves among four quantum memories. Nature 468, 412–416 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Dür, W., Vidal, G. & Cirac, J. I. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  43. Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310 (2005).

    Article  ADS  Google Scholar 

  44. van Loock, P. et al. Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 96, 240501 (2006).

    Article  PubMed  Google Scholar 

  45. Collins, O. A., Jenkins, S. D., Kuzmich, A. & Kennedy, T. A. B. Multiplexed memory-insensitive quantum repeaters. Phys. Rev. Lett. 98, 060502 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Sun, P.-F. et al. Deterministic time-bin entanglement between a single photon and an atomic ensemble. Phys. Rev. Lett. 128, 060502 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Xu, W. et al. Fast preparation and detection of a Rydberg qubit using atomic ensembles. Phys. Rev. Lett. 127, 050501 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Wang, X.-J. et al. Cavity-enhanced atom-photon entanglement with subsecond lifetime. Phys. Rev. Lett. 126, 090501 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Liu, J.-L. et al. Data for “Creation of memory–memory entanglement in a metropolitan quantum network”. Zenodo https://doi.org/10.5281/zenodo.8149009 (2023).

Download references

Acknowledgements

We acknowledge QuantumCTek for the allocation of node Bob, and Hefei Institutes of Physical Science for the allocation of node Charlie. This research was supported by the Innovation Program for Quantum Science and Technology (no. 2021ZD0301104), National Key R&D Program of China (no. 2020YFA0309804), National Natural Science Foundation of China (no. T2125010), Anhui Initiative in Quantum Information Technologies, and the Strategic Priority Research Program of the Chinese Academy of Sciences (no. XDB35000000).

Author information

Authors and Affiliations

Authors

Contributions

X.-H.B. and J.-W.P. conceived and designed the research. J.-L.L., X.-Y.L., Y.Y., C.-Y.W., B.W., Z.Y. and D.T. performed the experiment. Y.H., J.-W.J. and X.J. developed the phase feedback electronics. M.-Y.Z., X.-P.X. and Q.Z. built the QFC modules. B.Y., X.-B.L. and Q.-H.M. made a pump laser for the QFC. J.Z. contributed silicon single-photon detectors. J.-L.L., X.-Y.L., Y.Y., X.-H.B. and J.-W.P. analysed the data and wrote the paper with input from all other authors.

Corresponding authors

Correspondence to Xiao-Hui Bao or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Simon Baier, Rikizo Ikuta and Michał Parniak for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JL., Luo, XY., Yu, Y. et al. Creation of memory–memory entanglement in a metropolitan quantum network. Nature 629, 579–585 (2024). https://doi.org/10.1038/s41586-024-07308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07308-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing