Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Jurassic shuotheriids show earliest dental diversification of mammaliaforms

Abstract

Shuotheriids are Jurassic mammaliaforms that possess pseudotribosphenic teeth in which a pseudotalonid is anterior to the trigonid in the lower molar, contrasting with the tribosphenic pattern of therian mammals (placentals, marsupials and kin) in which the talonid is posterior to the trigonid1,2,3,4. The origin of the pseudotribosphenic teeth remains unclear, obscuring our perception of shuotheriid affinities and the early evolution of mammaliaforms1,5,6,7,8,9. Here we report a new Jurassic shuotheriid represented by two skeletal specimens. Their complete pseudotribosphenic dentitions allow reidentification of dental structures using serial homology and the tooth occlusal relationship. Contrary to the conventional view1,2,6,10,11, our findings show that dental structures of shuotheriids can be homologized to those of docodontans and partly support homologous statements for some dental structures between docodontans and other mammaliaforms6,12. The phylogenetic analysis based on new evidence removes shuotheriids from the tribosphenic ausktribosphenids (including monotremes) and clusters them with docodontans to form a new clade, Docodontiformes, that is characterized by pseudotribosphenic features. In the phylogeny, docodontiforms and ‘holotherians’ (Kuehneotherium, monotremes and therians)13 evolve independently from a Morganucodon-like ancestor with triconodont molars by labio-lingual widening their posterior teeth for more efficient food processing. The pseudotribosphenic pattern passed a cusp semitriangulation stage9, whereas the tribosphenic pattern and its precursor went through a stage of cusp triangulation. The two different processes resulted in complex tooth structures and occlusal patterns that elucidate the earliest diversification of mammaliaforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Type specimens of F. chowi.
Fig. 2: Right dentition and dental morphology of F. chowi (holotype, IMMNH-009166).
Fig. 3: Tooth occlusion and competing hypotheses for tooth cusp homology of Feredocodon.
Fig. 4: Primary tooth patterns of mammaliaforms in the phylogenetic frame.

Similar content being viewed by others

Data availability

All material related to the data for phylogenetic analyses is presented in the article, the Extended Data and the Supplementary Information (see also ref. 64). Life Science Identifiers for the new genera and species have been registered at ZooBank as Feredocodon (http://zoobank.org; LSID urn:lsid:zoobank.org:act:AFAD135D-9191-4016-BD38-345F630E0245) and F.chowi (LSID urn:lsid:zoobank.org:act:2EE7FBE9-80E1-42E4-B8F1-E2A985808BCA). The character list and data matrix for the phylogenetic analysis have been deposited in MorphoBank (http://www.morphobank.org; project number 5075).

Code availability

The PAUP commands for parsimony-based analyses, the MrBayes commands for Bayesian analyses, the results and logs of phylogenetic analyses (including the complete apomorphic list for the consensus tree from the PAUP analysis) and ancestral state reconstruction (from the Bayesian analyses) have been deposited in Zenodo (https://doi.org/10.5281/zenodo.10597270)64.

References

  1. Chow, M.-C. & Rich, T. H. Shuotherium dongi, n. gen. and sp., a therian with pseudo-tribosphenic molars from the Jurassic of Sichuan, China. Aust. Mammal. 5, 127–142 (1982).

    Article  Google Scholar 

  2. Wang, Y. Q., Clemens, W. A., Hu, Y. M. & Li, C. K. A probable pseudo-tribosphenic upper molar from the Late Jurassic of China and the early radiation of the Holotheria. J. Vertebr. Paleontol. 18, 777–787 (1998).

    Article  Google Scholar 

  3. Sigogneau-Russell, D. & Ensom, P. Thereuodon (Theria, Symmetrodonta) from the Lower Cretaceous of North Africa and Europe, and a brief review of symmetrodonts. Cretaceous Res. 19, 445–470 (1998).

    Article  Google Scholar 

  4. Luo, Z.-X., Ji, Q. & Yuan, C.-X. Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals. Nature 450, 93–97 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Kermack, K. A., Lee, A. J., Lees, P. M. & Mussett, F. A new docodont from the Forest Marble. Zool. J. Linn. Soc. 89, 1–39 (1987).

    Article  Google Scholar 

  6. Butler, P. M. An alternative hypothesis on the origin of docodont molar teeth. J. Vertebr. Paleontol. 17, 435–439 (1997).

    Article  Google Scholar 

  7. Kielan-Jaworowska, Z., Cifelli, R. L. & Luo, Z. X. Dentition and relationships of the Jurassic mammal Shuotherium. Acta Palaeontol. Pol. 47, 479–486 (2002).

    Google Scholar 

  8. Kielan-Jaworowska, Z., Cifelli, R. L. & Luo, Z.-X. Mammals from the Age of Dinosaurs: Origins, Evolutions, and Structure (Columbia Univ. Press, 2004).

  9. Averianov, A. O. Early Cretaceous symmetrodont mammal Gobiotheriodon from Mongolia and the classification of Symmetrodonta. Acta Palaeontol. Pol. 47, 705–716 (2002).

    Google Scholar 

  10. Luo, Z. X. & Martin, T. Analysis of molar structure and phylogeny of docodont genera. Bull. Carnegie Mus. Nat. Hist. 2007, 27–47 (2007).

    Article  Google Scholar 

  11. Rougier, G. W., Sheth, A. S., Carpenter, K., Appella-Guiscafre, L. & Davis, B. M. A new species of Docodon (Mammaliaformes: Docodonta) from the Upper Jurassic Morrison Formation and a reassessment of selected craniodental characters in basal mammaliaforms. J. Mamm. Evol. 22, 1–16 (2015).

    Article  Google Scholar 

  12. Butler, P. M. The teeth of the Jurassic mammals. Proc. Zool. Soc. Lond. B 109, 329–356 (1939).

    Article  Google Scholar 

  13. Hopson, J. A. in Major Features of Vertebrate Evolution (ed. Spencer, R. S.) 190–219 (The Paleontological Society, 1994).

  14. Martin, T. & Averianov, A. O. A new docodont (Mammalia) from the Middle Jurassic of Kyrgyzstan, central Asia. J. Vertebr. Paleontol. 24, 195–201 (2004).

    Article  Google Scholar 

  15. Martin, T. & Averianov, A. O. Mammals from the Middle Jurassic Balabansai Formation of the Fergana Depression, Kyrgyzstan. J. Vertebr. Paleontol. 30, 855–871 (2010).

    Article  Google Scholar 

  16. Rich, T. H. et al. Evidence that monotremes and ausktribosphenids are not sister groups. J. Vertebr. Paleontol. 22, 466–469 (2002).

    Article  Google Scholar 

  17. Woodburne, M. O., Rich, T. H. & Springer, M. S. The evolution of tribospheny and the antiquity of mammalian clades. Mol. Phylogenet. Evol. 28, 360–385 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Flannery, T. F., Rich, T. H., Vickers-Rich, P., Veatch, E. G. & Helgen, K. M. The Gondwanan origin of Tribosphenida (Mammalia). Alcheringa 46, 277–290 (2022).

    Article  Google Scholar 

  19. Mao, F. et al. Fossils document evolutionary changes of jaw joint to mammalian middle ear. Nature https://doi.org/10.1038/s41586-024-07235-0 (2024).

  20. Butler, P. M. A theory of the evolution of mammalian molar teeth. Am. J. Sci. 239, 421–450 (1941).

    Article  ADS  Google Scholar 

  21. Van, V. L. M. Serial homology: the crests and cusps of mammalian teeth. Acta Palaeontol. Pol. 38, 145–158 (1994).

    Google Scholar 

  22. Butler, P. M. in Teeth Revisited: Proceedings of the VIIth International Symposium on Dental Morphology Vol. 53 (eds Russell, D. E. et al.) 329–340 (Mémoires du Muséum National d’Histoire Naturelle, 1988).

  23. Martin, T. et al. in Mammalian Teeth – Form and Function (eds Martin, T. & von Koenigswald, W.) 187–214 (Verlag Dr. Friedrich Pfeil, 2020).

  24. Meng, Q.-J. et al. An arboreal docodont from the Jurassic and mammaliaform ecological diversification. Science 347, 764–768 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Zhou, C.-F., Bhullar, B. A. S., Neander, A. I., Martin, T. & Luo, Z.-X. New Jurassic mammaliaform sheds light on early evolution of mammal-like hyoid bones. Science 365, 276–279 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Ji, Q., Luo, Z.-X., Yuan, C.-X. & Tabrum, A. R. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311, 1123–1127 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Schultz, J. A., Bhullar, B. A. S. & Luo, Z. X. Re-examination of the Jurassic mammaliaform Docodon victor by computed tomography and occlusal functional analysis. J. Mamm. Evol. 26, 9–38 (2019).

    Article  Google Scholar 

  28. Butler, P. M. Evolutionary transformations of the mammalian dentition. Zoosyst. Evol. 77, 167–174 (2001).

    Article  Google Scholar 

  29. Van Valen, L. M. Homology and causes. J. Morphol. 173, 305–312 (1982).

    Article  PubMed  Google Scholar 

  30. Butler, P. M. in Development, Function and Evolution of Teeth (eds Butler, P. M. & Joysey, K. A.) 439–453 (Academic, 1978).

  31. Parrington, F. R. On the Upper Triassic mammals. Philos. Trans. R. Soc. B 261, 231–272 (1971).

    ADS  Google Scholar 

  32. Crompton, A. W. & Jenkins, F. A. Molar occlusion in Late Triassic mammals. Biol. Rev. 43, 427–458 (1968).

    Article  CAS  PubMed  Google Scholar 

  33. Crompton, A. W. & Sun, A.-L. Cranial structure and relationships of the Liassic mammal Sinoconodon. Zool. J. Linn. Soc. 85, 99–119 (1985).

    Article  Google Scholar 

  34. Kemp, T. S. The Origin and Evolution of Mammals (Oxford Univ. Press, 2005).

  35. Wang, Y. Q. & Li, C. K. Reconsideration of the systematic position of the Middle Jurassic mammaliaforms Itatodon and Paritatodon. Palaeontol. Pol. 67, 249–256 (2016).

    Google Scholar 

  36. Luo, Z. X., Cifelli, R. L. & Kielan-Jaworowska, Z. Dual origin of tribosphenic mammals. Nature 409, 53–57 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Averianov, A. O. & Lopatin, A. V. Itatodon tatarinovi (Tegotheriidae, Mammalia), a docodont from the Middle Jurassic of western Siberia and phylogenetic analysis of Docodonta. Paleontol. J. 40, 668–677 (2006).

    Article  Google Scholar 

  38. Sigogneau-Russell, D. & Godefroit, P. A primitive docodont (Mammalia) from the Upper Triassic of France and the possible therian affinities of the order. C. R. Acad. Sci. 324, 135–140 (1997).

    Google Scholar 

  39. Datta, P. Earliest mammal with transversely expanded upper molar from the Late Triassic (Carnian) Tiki Formation, South Rewa Gondwana Basin, India. J. Vertebr. Paleontol. 25, 200–207 (2005).

    Article  Google Scholar 

  40. Averianov, A., Lopatin, A., Krasnolutskii, S. & Ivantsov, S. New docodontans from the Middle Jurassic of Siberia and reanalysis of Docodonta interrelationships. Proc. Zool. Inst. Russ. Acad. Sci. 314, 121–148 (2010).

    Article  Google Scholar 

  41. Sigogneau-Russell, D. Docodonts from the British Mesozoic. Acta Palaeontol. Pol. 48, 357–374 (2003).

    Google Scholar 

  42. Sigogneau-Russell, D. A new therian mammal from the Rhaetic locality of Saint-Nicolas-de-Port (France). Zool. J. Linn. Soc. 78, 175–186 (1983).

    Article  Google Scholar 

  43. Patterson, B. Early Cretaceous Mammals and the Evolution of Mammalian Molar Teeth Vol. 13 (Chicago Natural History Museum, 1956).

  44. Clemens, W. A. & Kielan-Jaworowska, Z. in Mesozoic Mammals: the First Two-Thirds of Mammalian History (eds Lillegraven, J. A. et al.) 99–149 (Univ. California Press, 1979).

  45. Meng, J. Mesozoic mammals of China: implications for phylogeny and early evolution of mammals. Natl Sci. Rev. 1, 521–542 (2014).

    Article  Google Scholar 

  46. Sulej, T. et al. The earliest-known mammaliaform fossil from Greenland sheds light on origin of mammals. Proc. Natl Acad. Sci. USA 117, 26861–26867 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jäger, K. R., Gill, P. G., Corfe, I. & Martin, T. Occlusion and dental function of Morganucodon and Megazostrodon. J. Vertebr. Paleontol. 39, e1635135 (2019).

    Article  Google Scholar 

  48. Crompton, A. W. The dentitions and relationships of the southern African Triassic mammals, Erythrotherium parringtoni and Megazostrodon rudnerae. Bull. Brit. Mus. (Nat. Hist.) Geol. 24, 399–443 (1974).

    Google Scholar 

  49. Davis, B. M. Evolution of the tribosphenic molar pattern in early mammals, with comments on the “dual-origin” hypothesis. J. Mamm. Evol. 18, 227–244 (2011).

    Article  Google Scholar 

  50. Schultz, J. A. & Martin, T. Function of pretribosphenic and tribosphenic mammalian molars inferred from 3D animation. Naturwissenschaften 101, 771–781 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Mao, F.-Y. et al. Integrated hearing and chewing modules decoupled in a Cretaceous stem therian mammal. Science 367, 305–308 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Flynn, J. J., Parrish, J. M., Rakotosamimanana, B., Simpson, W. F. & Wyss, A. E. A Middle Jurassic mammal from Madagascar. Nature 401, 57–60 (1999).

    Article  ADS  CAS  Google Scholar 

  53. Yuan, C.-X., Ji, Q., Meng, Q.-J., Tabrum, A. R. & Luo, Z.-X. Earliest evolution of multituberculate mammals revealed by a new Jurassic fossil. Science 341, 779–783 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Lopatin, A. & Averianov, A. Kielantherium, a basal tribosphenic mammal from the Early Cretaceous of Mongolia, with new data on the aegialodontian dentition. Acta Palaeontol. Pol. 52, 441–446 (2007).

    Google Scholar 

  55. Rich, T. H. et al. The mandible and dentition of the Early Cretaceous monotreme Teinolophos trusleri. Alcheringa 40, 475–501 (2016).

    Article  Google Scholar 

  56. Mao, F., Zhang, C., Liu, C. & Meng, J. Fossoriality and evolutionary development in two Cretaceous mammaliamorphs. Nature 592, 577–582 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Mao, F., Li, Z., Hooker, J. J. & Meng, J. A new euharamiyidan, Mirusodens caii (Mammalia: Euharamiyida), from the Jurassic Yanliao Biota and evolution of allotherian mammals. Zool. J. Linn. Soc. 199, 832–859 (2023).

  58. Liu, J. & Olsen, P. The phylogenetic relationships of Eucynodontia (Amniota: Synapsida). J. Mamm. Evol. 17, 151–176 (2010).

    Article  ADS  Google Scholar 

  59. Krause, D. W. et al. Skeleton of a Cretaceous mammal from Madagascar reflects long-term insularity. Nature 581, 421–427 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Panciroli, E. et al. New species of mammaliaform and the cranium of Borealestes (Mammaliformes: Docodonta) from the Middle Jurassic of the British Isles. Zool. J. Linn. Soc. 192, 1323–1362 (2021).

    Article  Google Scholar 

  61. Panciroli, E. et al. Postcrania of Borealestes (Mammaliformes, Docodonta) and the emergence of ecomorphological diversity in early mammals. Palaeontology 65, e12577 (2022).

    Article  Google Scholar 

  62. Wallace, R. V. S., Martínez, R. & Rowe, T. First record of a basal mammaliamorph from the early Late Triassic Ischigualasto Formation of Argentina. PLoS ONE 14, e0218791 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Swofford, D. L. Phylogenetic Analysis Using Parsimony, v4.0b10 (Sinauer Associates, Inc, 2002).

  64. Mao, F., Zhang, C. & Meng, J. Morphological dataset of mammaliamorphs and phylogenetic analysis codes (MrBayes 3.2.4 and PAUP*4.0a152). Zenodo https://doi.org/10.5281/zenodo.10597270 (2024).

  65. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gavryushkina, A., Welch, D., Stadler, T. & Drummond, A. J. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput. Biol. 10, e1003919 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A. & Ronquist, F. Total-evidence dating under the fossilized birth–death process. Syst. Biol. 65, 228–249 (2016).

    Article  PubMed  Google Scholar 

  68. Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39, 306–314 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Stadler, T. Sampling-through-time in birth-death trees. J. Theor. Biol. 267, 396–404 (2010).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  71. Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth-death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–E2966 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Geyer, C. J. Practical Markov chain Monte Carlo. Stat. Sci. 7, 473–483 (1992).

    Google Scholar 

  74. Luo, Z.-X. et al. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature 548, 326–329 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. King, B. & Beck, R. M. Tip dating supports novel resolutions of controversial relationships among early mammals. Proc. R Soc. B 287, 20200943 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ronquist, F. et al. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 61, 973–999 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. King, B. Bayesian tip-dated phylogenetics in paleontology: topological effects and stratigraphic fit. Syst. Biol. 70, 283–294 (2021).

    Article  PubMed  Google Scholar 

  78. Rowe, T. Definition, diagnosis, and origin of Mammalia. J. Vertebr. Paleontol. 8, 241–264 (1988).

    Article  Google Scholar 

  79. Averianov, A. O., Lopatin, A. V. & Leshchinskiy, S. V. New interpretation of dentition in Early Cretaceous docodontan Sibirotherium based on micro-computed tomography. J. Mamm. Evol. https://doi.org/10.1007/s10914-023-09682-4 (2023).

    Article  Google Scholar 

  80. Van Valen, L. An analysis of developmental fields. Dev. Biol. 23, 456–477 (1970).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Xie for specimen preparation; T. Jiang for access to comparative specimens housed in their collections; G. Peng, S. Jiang, B. Hao, G. Guang and H. Hu for discussions of localities and stratigraphies; Y. Hou, P. Yin and J. Wang for CT scanning of the specimens; and A. Shi and Y. Xu for helping with drawings. F.M. was supported by the National Natural Science Foundation of China (42288201; 42122010; 42072002), and the Youth Innovation Promotion Association CAS (2019076).

Author information

Authors and Affiliations

Authors

Contributions

F.M. and J.M. designed the study and wrote the paper; F.M. conducted the CT scan and rendering work; Z.L. and Z.W. collected and curated specimens and provided related stratigraphic data; C.Z. ran the Bayesian analyses; T.R. and P.V.-R. provided discussions and manuscript edits; all authors edited and approved the manuscript.

Corresponding authors

Correspondence to Fangyuan Mao or Jin Meng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Robin Beck and Julia Schultz for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Nomenclature, cusp homology and tooth occlusal relationships used in this study.

Tooth drawings are based on Crompton and Jenkins32 for morganucodontans and Kuehneotherium, Luo and Martin10 for Haldanodon, Davis49 for Kokolellia; some figures are reversed from the original ones for convenience of comparison. Based on the new evidence, we assume that the primary cusps of shuotheriids can be homologized with those of docodontidans, other non-allotherian mammaliaforms such as morganucodontans (perhaps further to non-mammaliamorph cynodonts, such as Thrinaxodon, as suggested by Crompton and Jenkins32), and the tribosphenic molar. The dot-line diagrams in the lower box show the cusp relationship. Dark dots represent main lower cusps; gray dots are main upper primary cusps. Abbreviations: A, cusp A (paracone, pa); a, cusp a (protoconid, prd); art, anterior root; b, cusp b (paraconid, pad); B, cusp B (parastyle?, pas, or stylocone?, stc); C, cusp C (metacone, me); c, cusp c (metaconid, med); d, cusp d (hypoconid, hyd); df, docodont cuspule f10,24; end, entoconid; g, cusp g (kühnecone31); hyd, hypoconid (cusp d); hyld, hypoconulid; lrt, lingual root; me, metacone (cusp C); med, metaconid (cusp c); pa, paracone (cusp A); pad, paraconid (cusp b); pas, parastyle (cusp B?); ppr, pseudoprotocone; pr, protocone; prd, protoconid (cusp a); prt, posteiror root; ptad, pseudotalonid; ptrb, pseudotrigon basin; ptrd, pseudotrigonid; stc, stylecone (cusp B?); tal, talonid; trb(s), trigon basin (secondary); trd, trigonid. X, cusp X (pseudoprotocone, ppr). The terminologies are based on Crompton and Jenkins32, Butler6, Luo and Martin10, Davis49, Averianov9, and this study.

Extended Data Fig. 2 The holotype of Feredocodon chowi (IMMNH-PV01035).

A. Slab B of the holotype, which contains most of the postcranial elements. B. Slab A of the holotype, containing the skull and mostly impressions of the postcranium. The green arrows in A and B mark two matching points of the two slabs. C-D. Close-up views of the red-boxed areas in A. E. CT-rendered skull and forepart of the postcranium. The red boxes A and B correspond to the close-up views in Extended Data Fig. 2. Abbreviations: ang, angular process; cal, calcaneus; cl, clavicle; cor, coronoid process of the dentary; cv-(1-7), cervical vertebra 1 to 7; d-(I-V), digit I to V of the manus; dcf, distal condyles of the femur; dco, dentary condyle; del, deltopectoral crest; den, dentary; dppm, dorsal process of the premaxilla; ect, ectepicondyle; ent, entepicondyle; fe, femur; feh, femoral head; fi, fibula; glf, glenoid fossa; gtr, greater trochanter; gtu, greater tubercle; hu, humera; huh, humeral head; icl, interclavicle; il, ilium; ltr, lesser trochanter; lv (1-5), lumbar vertebra 1 to 5; ltu, lesser tubercle; mas, manubrium of the sternum; mtc, metacarpals; prm, promontorium; r(1-16), rib 1 to 16; ra, radia; rac, radial condyle of the humerus; sc, scapula; sen, semilunar notch; sv-1-2, sacral vertebra 1 to 2; thv-1, first thoracic vertebra; ti, tibia; ul, ulna; ulc, ulnar condyle of the humerus; zya, zygomatic arch. The left and right side structure is denoted with l- and r-, respectively.

Extended Data Fig. 3 The paratype of Feredocodon chowi (IMMNH-PV01925).

A. Line drawing based on slab A of IMMNH-PV01925. B-C. Slabs A and B of IMMNH-PV01925. The labelled red boxes correspond to the close-up views of C-H in Extended Data Fig. 4. D-E. Reconstructed dorsal and ventral views of the partial cranium and neck region from slab B of IMMNH-PV01925. Abbreviations: ata, atlantal arch; atb, atlas body; axb, axis body; cav, caudal vertebra (with number); cvb-3, the third cervical vertebra; dec, dentary condyle; den, dens of the atlas; efan, efflected angular (mandibular) process; fe, femur; fi, fibula; iam, internal auditory meatus; il, ilium; inc, intercentrum; jf, jugular (posterior lacerate) foramen; ju, jugal; lv-1-5, lumbar vertebra 1 to 5; M(1-3), upper molar 1 to 3; mrp, medial ridge protuberance; occ, occipital condyle; pdb, postdentary bones; pfi, parafibular process; prm, promontorium; pub, pubic bone; qre, quadrate ramus of epipterygoid; r(1-16), rib 1 to 16; rar, retroarticular process; sc, scapula; sq, squamosal; sv-1-2, sacral vertebra 1 to 2; ti, tibia; ul, ulna; vlt, ventral limb of the ectotympanic (reflected lamina of the angular); zma, zygomatic arch; zpma, zygomatic process of the maxilla. The left and right side structure is denoted with l- and r-, respectively. The red line in D and E indicates the crack separating the skull that is digitally rejoined from two separate CT-scans.

Extended Data Fig. 4 The paratype of Feredocodon chowi (IMMNH-PV01925).

A-B. Dorsal and ventral views of CT-data reconstructed skull and anterior postcranium preserved on slab A of IMMNH-PV01925. C. Left scapula and forelimb. D. Right forelimb, posterior cervical and anterior thorasic vertebrae. E.Pelvic girdle and anterior caudal vertebrae in ventral view and proximal hind limbs. F. Right scapula and forelimb. G, Right pes and three caudal vertebrae in ventral view. H. Left pes (disarticulated). C-H correspond to the red-boxed areas in Extended Data Fig. 3b and c. Abbreviations: ac, acromion; ast, astragalus; atl, atlantal lamina; cal, calcaneus; cav-#, caudal vertebra (with number); cor, coronoid process of the dentary; cv-#, cervical vertebra with number; dch, distal condyle(s) of the humerus; del, deltopectoral crest; feh, femoral head; fi, fibula; glf, glenoid fossa of the squamosal; gls, glenoid fossa of the scapula; gtr, greater trochanter; gtu, greater tubercle; haa, haemal arch; hm, hamate; huh, humeral head; icl, interclavicle; il, ilium; isc, ischium; ju, jugal; ltu, lesser tubercle; lv-1-5, lumbar vertebra 1 to 5; mc-1-5, metacarpal 1 to 5; mt-1-5, metatarsal 1 to 5; nav, navicular; pi, pisiform; r-#, rib with number; ra, radius; sc, scapula; sca, scaphoid; scs, scapular spine; spax, spinous process of the axis; spth, spinous process of the thoracic vertebra; sv-1-2, sacral vertebra 1 to 2; tdm, tibial distal malleolus; tpca, transverse process of caudal vertebra; trm, trapezium; trq, triquetrum; ul, ulna. The left and right side structure is denoted with l- and r-, respectively.

Extended Data Fig. 5 Dentitions of Feredocodon chowi (holotype [IMMNH-PV01035] and paratype [IMMNH-PV01925]).

A-C. Right upper dentition of the holotype in lingual, occlusal, and labial views. D-F. Right lower dentition of the holotype in lingual, occlusal, and labial views. G-I. Upper teeth of the paratype in occlusal, lingual, and labial views. J-L, Lower teeth of the paratype in lingual, occlusal, and labial views. See Supplementary Information for description.

Extended Data Fig. 6 Cheek teeth of Feredocodon in occlusal relationship and comparison with other forms.

A. Lingual view of left P2-M3 and p2-m3 in occlusion (in preserved condition). B. The same teeth tilted lingually. C. Dorsal view in which the roots of the upper and the crowns of the lower are exposed. D. Labial view. E. Crown view of the upper teeth and ventrolabial views of the lower teeth. F. Close-up lingual view (slightly tilted) of the right P6-M3 and p6-m3. G. Lingual view of the left P6-M3 and p6-m3. H. Occlusal relationship of tribosphenic molars. I. Molar occlusal relationship of the docodont Haldanodon (adapted from figure 10.20 of ref. 23). J. Molar occlusal relationship of the shuotheriid Pseudotribos (adapted from figure 2e of ref. 4). Abbreviations: dr, distal root; lr, lingual root; met, metacone ( = cusp c); mr, mesial root; ppr, pseudoprotocone; pr, protocone; prd, protoconid ( = cusp a); pspr, pseudoprotocone (original lablelling); pstal, pseudotalonid; talb, talonid basin. Note 1. The occlusal pattern of Feredocodon is similar to that of Haldanodon; however, in Feredocodon the pseudoprotocone of M2 occludes in the pseudotalonid of m2, whereas in Haldanodon the pseudoprotocone of M2 was interpreted to occlude in the pseudotalonid of m3; the latter was interpreted for Pseudotribos. In both Feredocodon and Haldanodon the pseudoprotocone does not occlude into the pseudotalonid basin, differing from the tribosphenic condition.

Extended Data Fig. 7 Cheek teeth comparison of shuotheriids and docodontans.

Identifications of the ultimate lower premolar and molars are from the original studies. The shaded teeth are our interpretation of the ultimate lower premolars in compared taxa. The lower molars are shown in lingual and occlusal views, whereas the upper ones are in occlusal view. The figures are modified and derived from the following resources: Shuotherium lower molars (A1-A2, new images from cast of IVPP V6448); Shuotherium upper molar (A3) (new image from cast of IVPP V7467); Agilodocodon (C1-3) (adapted from figures 2C–E of ref. 24); Haldanodon (D1-3) (adapted from figures 5D and 8D-E of ref. 10); Simpsonodon (E1-3) (adapted from figures 5A-B, 32A of ref. 5); Borealestes (F1-3) (adapted from figures 10C and 15B of ref. 60); Sibirotherium (G1-2) (adapted from figures 1b and 3 of ref. 79). Figures are not on scale and may be reversed photographically for convenience of comparison.

Extended Data Fig. 8 Serial homology and morphological gradient as illustrated by the dentitions of Feredocodon.

The most common structures in the dentitions are the paracone (cusp A) in the upper dentition and the protoconid (cusp a) in the lower; they are the earliest formed in development and most primitive in evolution. The least common structures are the pseudoprotocone and cusp g, which are the latest formed cusps in development and most derived in evolution. Yellow dots indicate initial condition of the feature in teeth. Green dots indicate occurences of structures in corresponding teeth. Dark green indicates the parastyle, homologous with cusp B30. The empty circle indicates lack of cusp B (present in the left P4 of IMMNH-009166), probably a “development noise”80.

Extended Data Fig. 9 Comparison of hypotheses on lower molar cusp homologies of shuotheriids and docodontans.

A. Conventional interpretation of the lower molar structures of Shuotherium; the neomorphic pseudotalonid of the molars is marked in green. B. A hypothetical dental occlusal relationship in Shuotherium based on the conventional interpretation. In addition to what has been explained in the text and Fig. 3, an additional issue is that the ultimate upper premolar of Shuotherium would not have a pseudoprotocone because there is no area in px to receive it. This contradicts the fact that px is already submolariform (enlarged and widened). C. Dental structurers reinterpreted under the new hypothesis (see Fig. 3 and text). D. A hypothetical dental occlusal relationship in Shuotherium under the new hypothesis. The ultimate upper premolar (Px) and even the penultimate premolar may have the pseudoprotocone, as in Feredocodon. E-H. Comparison of cusp homology hypotheses in the lower molar of shuotheriids and docodontans. Abbreviations: c-g, cusp g; trd, trigonid; pad(b), paraconid (cusp b); phy, pseudohypoconid; ptad, pseudotalonid; ptrd, pseudotrigonid.

Extended Data Table 1 Measurements (Length/Width in mm)

Supplementary information

Supplementary Information

The Supplementary Information provides the definitions of dental structures recognized and used in the study. It contains a detailed description about systematic paleontology, including the definition and emended diagnosis for higher level taxa (clades) as well as the new genus and species reported in the study. It also provides the data and methods for phylogenetic analyses. In particular, the character list includes specific coding for two new species and six known shuotheriid and docodontan taxa. The character list also contains brief explanations about the characters and character coding that are modified based on the new data recognized in this study. The phylogenetic analyses include PAUP analysis and Bayesian tip-dating analysis; only the essential results, including the consensus trees, are presented. The related character list and dataset are presented in MorphoBank (http://www.morphobank.org; project number 5075), and the related detailed settings and logs of these analyses are deposited in Zenodo (https://doi.org/10.5281/zenodo.10597270, ref. 64). See also Methods in the main text.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, F., Li, Z., Wang, Z. et al. Jurassic shuotheriids show earliest dental diversification of mammaliaforms. Nature 628, 569–575 (2024). https://doi.org/10.1038/s41586-024-07258-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07258-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing