Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Graphene nanoribbons grown in hBN stacks for high-performance electronics

This article has been updated

Abstract

Van der Waals encapsulation of two-dimensional materials in hexagonal boron nitride (hBN) stacks is a promising way to create ultrahigh-performance electronic devices1,2,3,4. However, contemporary approaches for achieving van der Waals encapsulation, which involve artificial layer stacking using mechanical transfer techniques, are difficult to control, prone to contamination and unscalable. Here we report the transfer-free direct growth of high-quality graphene nanoribbons (GNRs) in hBN stacks. The as-grown embedded GNRs exhibit highly desirable features being ultralong (up to 0.25 mm), ultranarrow (<5 nm) and homochiral with zigzag edges. Our atomistic simulations show that the mechanism underlying the embedded growth involves ultralow GNR friction when sliding between AA′-stacked hBN layers. Using the grown structures, we demonstrate the transfer-free fabrication of embedded GNR field-effect devices that exhibit excellent performance at room temperature with mobilities of up to 4,600 cm2 V–1 s–1 and on–off ratios of up to 106. This paves the way for the bottom-up fabrication of high-performance electronic devices based on embedded layered materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Directly grown embedded graphene nanoribbons.
Fig. 2: Ultralong embedded zigzag GNRs exhibiting 1D moiré superstructures.
Fig. 3: Embedded GNR sliding mechanism.
Fig. 4: Superior FETs based on the embedded GNRs.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in this paper and its Supplementary Information or from the corresponding authors upon request.

Code availability

The codes related to the findings of this study are available from the corresponding authors upon request.

Change history

  • 28 March 2024

    A production error introduced in the title of the scale bar in Fig. 4b was corrected from Isd to |Isd| (A).

References

  1. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Li, L. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 11, 593–597 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Lin, Y.-M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662–662 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Son, Y.-W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

    Article  PubMed  Google Scholar 

  11. Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Betti, A., Fiori, G. & Iannaccone, G. Drift velocity peak and negative differential mobility in high field transport in graphene nanoribbons explained by numerical simulations. Appl. Phys. Lett. 99, 242108 (2011).

    Article  Google Scholar 

  13. Geng, Z. et al. Graphene nanoribbons for electronic devices. Ann. Phys. 529, 1700033 (2017).

    Article  Google Scholar 

  14. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Llinas, J. P. et al. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8, 633 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang, H. S. et al. Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride. Nat. Mater. 20, 202–207 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).

    Article  PubMed  Google Scholar 

  18. Chen, C. et al. Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes. Nat. Electron. 4, 653–663 (2021).

    Article  CAS  Google Scholar 

  19. Li, H. et al. Photoluminescent semiconducting graphene nanoribbons via longitudinally unzipping single-walled carbon nanotubes. ACS Appl. Mater. Interfaces 13, 52892–52900 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, L. et al. Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches. Nat. Commun. 8, 14703 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang, G. et al. Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching. Appl. Phys. Lett. 109, 053101 (2016).

    Article  Google Scholar 

  22. Wang, X. et al. Graphene nanoribbons with smooth edges behave as quantum wires. Nat. Nanotechnol. 6, 563–567 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Lin, M.-W. et al. Approaching the intrinsic band gap in suspended high-mobility graphene nanoribbons. Phys. Rev. B 84, 125411 (2011).

    Article  Google Scholar 

  24. Lu, X. et al. Graphene nanoribbons epitaxy on boron nitride. Appl. Phys. Lett. 108, 113103 (2016).

    Article  Google Scholar 

  25. Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Garcia, A. G. F. et al. Effective cleaning of hexagonal boron nitride for graphene devices. Nano Lett. 12, 4449–4454 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Pham, P. V. Cleaning of graphene surfaces by low-pressure air plasma. R. Soc. Open Sci. 5, 172395 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim, Y., Herlinger, P., Taniguchi, T., Watanabe, K. & Smet, J. H. Reliable postprocessing improvement of van der Waals heterostructures. ACS Nano 13, 14182–14190 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Lyu, B. et al. Catalytic growth of ultralong graphene nanoribbons on insulating substrates. Adv. Mater. 34, 2200956 (2022).

    Article  CAS  Google Scholar 

  32. Mandelli, D., Ouyang, W., Urbakh, M. & Hod, O. The princess and the nanoscale pea: long-range penetration of surface distortions into layered materials stacks. ACS Nano 13, 7603–7609 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Tapasztó, L., Dobrik, G., Lambin, P. & Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3, 397–401 (2008).

    Article  PubMed  Google Scholar 

  34. Way, A. J. et al. Graphene nanoribbons initiated from molecularly derived seeds. Nat. Commun. 13, 2992 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moreno, C. et al. On-surface synthesis of superlattice arrays of ultra-long graphene nanoribbons. Chem. Commun. 54, 9402–9405 (2018).

    Article  CAS  Google Scholar 

  36. Jiao, L., Wang, X., Diankov, G., Wang, H. & Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 5, 321–325 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Sprinkle, M. et al. Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol. 5, 727–731 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Penumatcha, A. V., Salazar, R. B. & Appenzeller, J. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model. Nat. Commun. 6, 8948 (2015).

    Article  PubMed  Google Scholar 

  40. Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Cheng, Z. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 5, 416–423 (2022).

    Article  Google Scholar 

  43. Zhang, Q., Fang, T., Xing, H., Seabaugh, A. & Jena, D. Graphene nanoribbon tunnel transistors. IEEE Electron Device Lett. 29, 1344–1346 (2008).

    Article  CAS  Google Scholar 

  44. Zhao, P., Chauhan, J. & Guo, J. Computational study of tunneling transistor based on graphene nanoribbon. Nano Lett. 9, 684–688 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Rahman, A., Jing, G., Datta, S. & Lundstrom, M. S. Theory of ballistic nanotransistors. IEEE Trans. Electron Devices 50, 1853–1864 (2003).

    Article  CAS  Google Scholar 

  46. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Javey, A. et al. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004).

    Article  PubMed  Google Scholar 

  48. Jiang, J., Xu, L., Qiu, C. & Peng, L.-M. Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Laroche, D., Gervais, G., Lilly, M. P. & Reno, J. L. 1D-1D Coulomb drag signature of a Luttinger liquid. Science 343, 631–634 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, S. et al. Tunneling spectroscopy in carbon nanotube-hexagonal boron nitride-carbon nanotube heterojunctions. Nano Lett. 20, 6712–6718 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Physical Review B 48, 13115–13118 (1993).

    Article  CAS  Google Scholar 

  52. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  53. Wu, P. et al. Carbon dimers as the dominant feeding species in epitaxial growth and morphological phase transition of graphene on different Cu substrates. Phys. Rev. Lett. 114, 216102 (2015).

    Article  PubMed  Google Scholar 

  54. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  55. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  57. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  MathSciNet  Google Scholar 

  58. Ouyang, W., Mandelli, D., Urbakh, M. & Hod, O. Nanoserpents: graphene nanoribbon motion on two-dimensional hexagonal materials. Nano Lett. 18, 6009–6016 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Brenner, D. W. et al. A second-generation reactive empirical bondorder (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783–802 (2002).

    Article  CAS  Google Scholar 

  60. Kınacı, A., Haskins, J. B., Sevik, C. & Çağın, T. Thermal conductivity of BN-C nanostructures. Phys. Rev. B 86, 115410 (2012).

    Article  Google Scholar 

  61. Leven, I., Azuri, I., Kronik, L. & Hod, O. Inter-layer potential for hexagonal boron nitride. J. Chem. Phys. 140, 104106 (2014).

    Article  PubMed  Google Scholar 

  62. Leven, I., Maaravi, T., Azuri, I., Kronik, L. & Hod, O. Interlayer potential for graphene/h-BN heterostructures. J. Chem. Theory Comput. 12, 2896–2905 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Maaravi, T., Leven, I., Azuri, I., Kronik, L. & Hod, O. Interlayer potential for homogeneous graphene and hexagonal boron nitride systems: reparametrization for many-body dispersion effects. J. Phys. Chem. C 121, 22826–22835 (2017).

    Article  CAS  Google Scholar 

  64. Ouyang, W. et al. Mechanical and tribological properties of layered materials under high pressure: assessing the importance of many-body dispersion effects. J. Chem. Theory Comput. 16, 666–676 (2020).

    Article  PubMed  Google Scholar 

  65. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  66. Bitzek, E., Koskinen, P., Gahler, F., Moseler, M. & Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).

    Article  PubMed  Google Scholar 

  67. Shylau, A. A., Kłos, J. W. & Zozoulenko, I. V. Capacitance of graphene nanoribbons. Phys. Rev. B 80, 205402 (2009).

    Article  Google Scholar 

  68. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 293–373 (Wiley, 2006).

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (no. 2021YFA1202902, 2020YFA0309000, 2022YFA1405400 and 2022YFA1402702), the National Natural Science Foundation of China (no. 12374292, 12074244, 12102307, 11890673, 11890674, 11874258, 12074247, 12174249 and 92265102), the open research fund of Songshan Lake Materials Laboratory (no. 2021SLABFK07). W.O. acknowledges the Natural Science Foundation of Hubei Province (2021CFB138) and the start-up fund of Wuhan University. M.U. acknowledges the financial support from the Israel Science Foundation (grant no. 1141/18) and the ISF-NSFC joint grant 3191/19. O.H. is grateful for the financial support from the Israel Science Foundation (grant no. 1586/17), Tel Aviv University Center for Nanoscience and Nanotechnology, the Naomi Foundation by the 2017 Kadar Award and the Heineman Chair of Physical Chemistry. Shiyong Wang acknowledges support from the Shanghai Municipal Science and Technology Qi Ming Xing Project (no. 20QA1405100) and the Fok Ying Tung Foundation for young researchers. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, (grant no. JPMXP0112101001), JSPS KAKENHI (grant nos. 19H05790 and 20H00354) and A3 Foresight by JSPS. Shiyong Wang and Z.S. acknowledge support from the Shanghai Jiao Tong University (21X010200846) and further support from the Shanghai talent program. L.Q. acknowledges the support from the Basic Research Laboratory Support Program (grant no. 2021R1A4A1033224) of the National Research Foundation of Korea. B.L. acknowledges support from the Development Scholarship for Outstanding Ph.D. of Shanghai Jiao Tong University. We also acknowledge support from the Instrument Analysis Center of Shanghai Jiao Tong University for performing focused ion beam application on GAIA3 and STEM on TALOS F200X. Molecular dynamics simulations were carried out at the National Supercomputer TianHe-1(A) Center in Tianjin and the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Contributions

B.L. and Z.S. initiated the project. Z.S., M.U., F.D., O.H. and W.O. supervised the project. B.L., J.C. and S.L. grew the samples. J.C. and B.L. carried out the TEM and STEM measurements. B.L., J.C. and P.S. carried out the SEM measurements. B.L., J.C. and S.L. carried out the AFM measurements. P.S., B.L. and J.C. fabricated the devices and conducted the electron transport measurements. Sen Wang and J.X. conducted the molecular dynamics simulations of GNR sliding. W.O. designed the molecular dynamics simulation setup and implemented the codes. L.Q., I.M. and F.D. carried out the theoretical calculations. K.W. and T.T. grew the hBN single crystals. B.L., J.C., S.L., Sen Wang, P.S., L.Q., I.M., C.L., C.H., X.Z., W.O., J.X., X.W., J.J., Q.L., Shiyong Wang, G.C., T.L., M.U., O.H., F.D. and Z.S. analysed the data. B.L., J.C., Sen Wang, S.L., L.Q., I.M., W.O., M.U., O.H., F.D. and Z.S. wrote the paper with input from all the authors.

Corresponding authors

Correspondence to Wengen Ouyang, Feng Ding, Michael Urbakh or Zhiwen Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Zhihong Chen, Aimin Song, Hao-Yu Lan, Debdeep Jena and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 AFM topography images of embedded GNRs and Fe nanoparticles at hBN step edges.

a, 3D AFM topography image of hBN step edges after Fe nanoparticle deposition and CVD growth. b, Zoom-in on the region marked by the dashed square in panel (a) demonstrating an embedded-GNR grown from a nanoparticle into the hBN stack. c and d, AFM topography images of hBN step edges with high nanoparticle density. e, Height profile taken along the blue dashed line in panels (c) and (d).

Extended Data Fig. 2 Demonstration of CVD growth of embedded GNRs.

a, SEM image of a bare hBN sample prior to growth. b, SEM image of the same sample as in panel a, following CVD growth. The bright lines are SEM fingerprints of embedded GNRs grown from edge-positioned catalytic nanoparticles.

Extended Data Fig. 3 Removal of on-surface GNRs through plasma etching.

Upper two panels are AFM topography images captured at the same hBN surface region following CVD growth, before a and after b plasma etching, respectively. Panels c and d present a schematic view of panels a and b, respectively.

Extended Data Fig. 4 Additional cross-sectional STEM images of embedded GNRs.

a, A large-scale STEM side-view image showing two embedded GNRs. b-e, Zoom-in STEM images. f-j, High-resolution STEM images of five embedded-GNRs with width in the range from 3 nm to 5 nm. k, Width statistics. Scale bar: (a) 20 nm, (b-e) 3 nm, (f-j) 2 nm.

Extended Data Fig. 5 Large-scale SEM images of embedded GNRs.

Straight embedded-GNRs of typical length of a few tens of micrometers mostly oriented along three distinct directions on the hBN flake that are angularly separated by 60o. Scale bar: (a) 5 μm, (b) 30 μm, (c) 20 μm and (d) 40 μm.

Extended Data Fig. 6 Transfer and output characteristics of additional GNR devices.

a-f, Room temperature transfer and output characteristics of six devices with channel lengths ranging from 1 μm to 30.7 μm. See SI section 7 for a discussion of the oscillations observed in the transfer curves.

Extended Data Fig. 7 Estimation of mobility and subthreshold swing of GNR devices.

a, Room temperature transfer characteristics (black) of a GNR device of channel length of L ≈ 24 μm, width of ≈3 nm, and SiO2 thickness of 285 nm (Cgs = 10 pF/m). A linear fit (red dashed line) yields a carrier mobility of ≈4,600 cm2V–1s–1. b, Room temperature transfer characteristics (black) of a different device (L ≈ 8 μm, width of ≈3 nm, and SiO2 thickness of 285 nm, Cgs = 10 pF/m), demonstrating a carrier mobility of ≈2,155 cm2 V–1 s–1. c and d, Carrier mobility as a function of gate voltage extracted from the transfer characteristics of the devices shown in panel (a) and (b), respectively. e, The statistics of carrier mobility. Semi-log plots of the transfer characteristic curves of a (f) 17 μm and (g) 8 μm long channel devices (≈3 nm in width) demonstrating similar room temperature subthreshold swing values of ≈ 100 mV/dec, as extracted from the slope of the dashed grey lines.

Extended Data Fig. 8 Temperature-dependent carrier mobility.

a, Transfer characteristics of a high-performance device at Vsd = 0.5 V for different temperatures. b, Measured mobility as a function of temperature. Inset: the measured mobility as a function of \({T}^{-1}\) (black squares) and the corresponding linear fit.

Extended Data Fig. 9 Representative types of inter-ribbon architectures.

Three-dimensional AFM height images (upper panels) and schematic illustrations (lower panels) of (a) vertically parallel, (b) vertically crossed, and (c) intersected planar Y-junction GNR architectures. For clarity, the top hBN layers are hidden in the three schematic illustrations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, B., Chen, J., Wang, S. et al. Graphene nanoribbons grown in hBN stacks for high-performance electronics. Nature 628, 758–764 (2024). https://doi.org/10.1038/s41586-024-07243-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07243-0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing