Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Time-resolved cryo-EM of G-protein activation by a GPCR

Abstract

G-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating guanine nucleotide exchange in the Gα subunit1. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR–G-protein complex. By monitoring the transitions of the stimulatory Gs protein in complex with the β2-adrenergic receptor at short sequential time points after GTP addition, we identified the conformational trajectory underlying G-protein activation and functional dissociation from the receptor. Twenty structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of main events driving G-protein activation in response to GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to Gα switch regions and the α5 helix that weaken the G-protein–receptor interface. Molecular dynamics simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP on closure of the α-helical domain against the nucleotide-bound Ras-homology domain correlates with α5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signalling events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conformational dynamics during G-protein activation.
Fig. 2: Changes in Gα structure initiated by GTP binding.
Fig. 3: Cryo-EM structures reveal transition intermediates between steady-state structures of nucleotide-free Gαs and activated Gαs–GTPγS.
Fig. 4: Destabilization of the β2AR–Gs interface.
Fig. 5: Stepwise activation of G protein following nucleotide exchange initiated by a GPCR.

Similar content being viewed by others

Data availability

The atomic coordinates of β2AR–GsEMPTY (frames 1–20) have been deposited in the Protein Data Bank (PDB) under accession codes 8GDZ, 8GE1, 8GE2, 8GE3, 8GE4, 8GE5, 8GE6, 8GE7, 8GE8, 8GE9, 8GEA, 8GEB, 8GEC, 8GED, 8GEE, 8GEF, 8GEG, 8GEH, 8GEI and 8GEJ, respectively. The atomic coordinates of β2AR–GsGTP(Merged) (Frames 1–20) have been deposited in the PDB under accession codes 8GFV, 8GFW, 8GFX, 8GFY, 8GFZ,8GG0, 8GG1, 8GG2, 8GG3, 8GG4, 8GG5, 8GG6, 8GG7, 8GG8, 8GG9, 8GGA, 8GGB, 8GGC, 8GGE and 8GGF, respectively; along with the coordinates from corresponding localized maps of β2AR under accession codes 8GGI, 8GGJ, 8GGK, 8GGL, 8GGM, 8GGN, 8GGO, 8GGP,8GGQ, 8GGR, 8GGS, 8GGT, 8GGU, 8GGV, 8GGW, 8GGX, 8GGY, 8GGZ, 8GH0 and 8GH1, respectively. The atomic coordinates of β2AR–GsGTP(Merged) (classes A–T) have been deposited in the PDB under accession codes 8UNL, 8UNM, 8UNN, 8UNO, 8UNP, 8UNQ, 8UNR, 8UNS, 8UNT, 8UNU, 8UNV, 8UNW, 8UNX, 8UNY, 8UNZ, 8UO0, 8UO1, 8UO2, 8UO3 and 8UO4, respectively. Cryo-EM maps of β2AR–GsEMPTY (frames 1–20) have been deposited in the Electron Microscopy Data Bank (EMDB) under accession codes EMD-29951, EMD-29952, EMD-29953, EMD-29954, EMD-29955, EMD-29956, EMD-29958, EMD-29959, EMD-29960, EMD-29961, EMD-29962, EMD-29964, EMD-29965, EMD-29966, EMD-29967, EMD-29968, EMD-29969, EMD-29970, EMD-29971 and EMD-29972, respectively. Cryo-EM maps of β2AR–GsGTP(5sec) (frames 1–20) have been deposited in the EMDB under accession codes EMD-40096, EMD-40097, EMD-40098, EMD-40099, EMD-40100, EMD-40101, EMD-40102, EMD-40103, EMD-40104, EMD-40105, EMD-40106, EMD-40107, EMD-40108, EMD-40109, EMD-40110, EMD-40111, EMD-40112, EMD-40113, EMD-40114 and EMD-40115, respectively. Cryo-EM maps of β2AR–GsGTP(10sec) (frames 1–20) have been deposited in the EMDB under accession codes EMD-40116, EMD-40117, EMD-40118, EMD-40119, EMD-40120, EMD-40121, EMD-40122, EMD-40123, EMD-40124, EMD-40125, EMD-40126, EMD-40127, EMD-40128, EMD-40129, EMD-40130, EMD-40131, EMD-40132, EMD-40133, EMD-40134 and EMD-40135, respectively. Cryo-EM maps of β2AR–GsGTP(17sec) (frames 1–20) have been deposited in the EMDB under accession codes EMD-40136, EMD-40137, EMD-40138, EMD-40139, EMD-40140, EMD-40141, EMD-40142, EMD-40143, EMD-40144, EMD-40145, EMD-40146, EMD-40147, EMD-40148, EMD-40149, EMD-40150, EMD-40151, EMD-40152, EMD-40153, EMD-40154 and EMD-40155, respectively. Cryo-EM maps of β2AR–GsGTP(Merged) (frames 1–20) have been deposited in the EMDB under accession codes EMD-29985, EMD-29986, EMD-29987, EMD-29988, EMD-29989, EMD-29990, EMD-29991, EMD-29992, EMD-29993, EMD-29994, EMD-29995, EMD-29996, EMD-29997, EMD-29998, EMD-29999, EMD-40000, EMD-40001, EMD-40002, EMD-40004 and EMD-40005, respectively, along with the corresponding localized maps of β2AR under accession codes EMD-40009, EMD-40010, EMD-40011, EMD-40012, EMD-40013, EMD-40014, EMD-40015, EMD-40016, EMD-40017, EMD-40018, EMD-40019, EMD-40020, EMD-40021, EMD-40022, EMD-40023, EMD-40024, EMD-40025, EMD-40026, EMD-40027 and EMD-40028, respectively; and localized G-protein maps under accession codes EMD-40156, EMD-40157, EMD-40158, EMD-40159, EMD-40160, EMD-40161, EMD-40163, EMD-40164, EMD-40165, EMD-40166, EMD-40167, EMD-40168, EMD-40169, EMD-40170, EMD-40171, EMD-40172, EMD-40173, EMD-40174, EMD-40175 and EMD-40176, respectively. Cryo-EM maps of β2AR–GsGTP(Merged) (classes A–T) have been deposited in the EMDB under accession codes EMD-42408, EMD-42409, EMD-42410, EMD-42411, EMD-42412, EMD-42413, EMD-42414, EMD-42415, EMD-42416, EMD-42417, EMD-42418, EMD-42419, EMD-42420, EMD-42421, EMD-42422, EMD-42423, EMD-42424, EMD-42425, EMD-42426 and EMD-42427, respectively. Raw cryo-EM image data have been deposited in the Electron Microscopy Public Image Archive (EMPIAR) under ascension codes EMPIAR-11855, EMPIAR-11856, EMPIAR-11857 and EMPIAR-11858 for the β2AR–GsEMPTY, β2AR–GsGTP(5sec), β2AR–GsGTP(10sec) and β2AR–GsGTP(17sec) datasets, respectively. Visualizations of MD trajectories are made available via MDsrv sessions included in a Zenodo dataset associated with this manuscript (https://doi.org/10.5281/zenodo.10548787)93. Coordinates of comparison structures were available and obtained through the Protein Data Bank, under accession codes: 3SN6 (ref. 2), 1AZT (ref. 45), 2RH1 (ref. 47), 7L0Q (ref. 30) and 7RKF (ref. 50).

References

  1. Cassel, D. & Selinger, Z. Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim. Biophys. Acta 452, 538–551 (1976).

    CAS  PubMed  Google Scholar 

  2. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Noel, J. P., Hamm, H. E. & Sigler, P. B. The 2.2 Å crystal structure of transducin-α complexed with GTPγS. Nature 366, 654–663 (1993).

    ADS  CAS  PubMed  Google Scholar 

  4. Van Eps, N. et al. Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit. Proc. Natl Acad. Sci. USA 108, 9420–9424 (2011).

    ADS  PubMed  PubMed Central  Google Scholar 

  5. Bornancin, F., Pfister, C. & Chabre, M. The transitory complex between photoexcited rhodopsin and transducin. Eur. J. Biochem. 184, 687–698 (1989).

    CAS  PubMed  Google Scholar 

  6. Westfield, G. H. et al. Structural flexibility of the Gαs α-helical domain in the β2-adrenoceptor Gs complex. Proc. Natl Acad. Sci. USA 108, 16086–16091 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coleman, D. et al. Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis. Science 265, 1405–1412 (1994).

    ADS  CAS  PubMed  Google Scholar 

  8. Namkung, Y. et al. Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors. Sci. Signal. https://doi.org/10.1126/scisignal.aat1631 (2018).

  9. Bunemann, M., Frank, M. & Lohse, M. J. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl Acad. Sci. USA 100, 16077–16082 (2003).

    ADS  PubMed  PubMed Central  Google Scholar 

  10. Manglik, A. et al. Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, X. et al. Structural insights into the process of GPCR–G protein complex formation. Cell 177, 1243–1251.e12 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma, X. et al. Analysis of β2AR-Gs and β2AR-Gi complex formation by NMR spectroscopy. Proc. Natl Acad. Sci. USA 117, 23096–23105 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oldham, W. M., Van Eps, N., Preininger, A. M., Hubbell, W. L. & Hamm, H. E. Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nat. Struct. Mol. Biol. 13, 772–777 (2006).

    CAS  PubMed  Google Scholar 

  14. Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature 369, 621–628 (1994).

    ADS  CAS  PubMed  Google Scholar 

  15. García-Nafría, J. & Tate, C. G. Structure determination of GPCRs: cryo-EM compared with X-ray crystallography. Biochem. Soc. Trans. 49, 2345–2355 (2021).

    PubMed  PubMed Central  Google Scholar 

  16. Isberg, V. et al. GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res. 44, D356–D364 (2016).

    CAS  PubMed  Google Scholar 

  17. Pandy-Szekeres, G. et al. GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res. 46, D440–D446 (2018).

    CAS  PubMed  Google Scholar 

  18. Manglik, A., Kobilka, B. K. & Steyaert, J. Nanobodies to study G protein-coupled receptor structure and function. Annu. Rev. Pharmacol. Toxicol. 57, 19–37 (2017).

    CAS  PubMed  Google Scholar 

  19. Jang, W., Lu, S., Xu, X., Wu, G. & Lambert, N. A. The role of G protein conformation in receptor–G protein selectivity. Nat. Chem. Biol. https://doi.org/10.1038/s41589-022-01231-z (2023).

  20. Qu, Q. et al. Insights into distinct signaling profiles of the µOR activated by diverse agonists. Nat. Chem. Biol. https://doi.org/10.1038/s41589-022-01208-y (2022).

  21. Ross, E. M., Maguire, M. E., Sturgill, T. W., Biltonen, R. L. & Gilman, A. G. Relationship between the β-adrenergic receptor and adenylate cyclase. J. Biol. Chem. 252, 5761–5775 (1977).

    CAS  PubMed  Google Scholar 

  22. Robison, G. A., Butcher, R. W. & Sutherland, E. W. Cyclic AMP. Annu. Rev. Biochem. 37, 149–174 (1968).

    CAS  PubMed  Google Scholar 

  23. Torphy, T. J. β-Adrenoceptors, cAMP and airway smooth muscle relaxation: challenges to the dogma. Trends Pharmacol. Sci. 15, 370–374 (1994).

    CAS  PubMed  Google Scholar 

  24. Hall, I. P. in Encyclopedia of Respiratory Medicine (eds Laurent, G. J. & Shapiro, S. D.) 288–292 (Academic, 2006).

  25. Lerch, M. T. et al. Viewing rare conformations of the β2 adrenergic receptor with pressure-resolved DEER spectroscopy. Proc. Natl Acad. Sci. USA 117, 31824–31831 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. De Lean, A., Stadel, J. M. & Lefkowitz, R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J. Biol. Chem. 255, 7108–7117 (1980).

    PubMed  Google Scholar 

  27. Wallukat, G. The β-adrenergic receptors. Herz 27, 683–690 (2002).

    PubMed  Google Scholar 

  28. Xu, X. et al. Constrained catecholamines gain β2AR selectivity through allosteric effects on pocket dynamics. Nat. Commun. 14, 2138 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).

    CAS  PubMed  Google Scholar 

  30. Zhang, M. et al. Cryo-EM structure of an activated GPCR–G protein complex in lipid nanodiscs. Nat. Struct. Mol. Biol. 28, 258–267 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Traut, T. W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 140, 1–22 (1994).

    CAS  PubMed  Google Scholar 

  32. Hein, P. et al. Gs activation is time-limiting in initiating receptor-mediated signaling. J. Biol. Chem. 281, 33345–33351 (2006).

    CAS  PubMed  Google Scholar 

  33. Gales, C. et al. Real-time monitoring of receptor and G-protein interactions in living cells. Nat. Methods 2, 177–184 (2005).

    CAS  PubMed  Google Scholar 

  34. Gregorio, G. G. et al. Single-molecule analysis of ligand efficacy in β2AR–G-protein activation. Nature 547, 68–73 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Markby, D. W., Onrust, R. & Bourne, H. R. Separate GTP binding and GTPase activating domains of a Gα subunit. Science 262, 1895–1901 (1993).

    ADS  CAS  PubMed  Google Scholar 

  36. Carpenter, B. & Tate, C. G. Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation. Protein Eng. Des. Sel. 29, 583–594 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wan, Q. et al. Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells. J. Biol. Chem. 293, 7466–7473 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117–127 (1991).

    ADS  CAS  PubMed  Google Scholar 

  39. Graziano, M. P., Freissmuth, M. & Gilman, A. G. Expression of Gsα in Escherichia coli. Purification and properties of two forms of the protein. J. Biol. Chem. 264, 409–418 (1989).

    CAS  PubMed  Google Scholar 

  40. Jones, J. C., Jones, A. M., Temple, B. R. & Dohlman, H. G. Differences in intradomain and interdomain motion confer distinct activation properties to structurally similar Gα proteins. Proc. Natl Acad. Sci. USA 109, 7275–7279 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mixon, M. B. et al. Tertiary and quaternary structural changes in Giα1 induced by GTP hydrolysis. Science 270, 954–960 (1995).

    ADS  CAS  PubMed  Google Scholar 

  43. Kaya, A. I. et al. A conserved phenylalanine as a relay between the α5 helix and the GDP binding region of heterotrimeric Gi protein α subunit. J. Biol. Chem. 289, 24475–24487 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ballesteros, J. A. & Weinstein, H. in Methods in Neurosciences Vol. 25 (ed. Sealfon, S. C.) 366–428 (Academic, 1995).

  45. Sunahara, R. K., Tesmer, J. J., Gilman, A. G. & Sprang, S. R. Crystal structure of the adenylyl cyclase activator G. Science 278, 1943–1947 (1997).

    ADS  CAS  PubMed  Google Scholar 

  46. Nygaard, R. et al. The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dror, R. O. et al. Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc. Natl Acad. Sci. USA 108, 13118–13123 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. DeVree, B. T. et al. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature 535, 182–186 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsutsumi, N. et al. Atypical structural snapshots of human cytomegalovirus GPCR interactions with host G proteins. Sci. Adv. 8, eabl5442 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Batebi, H. et al. Mechanistic insights into G protein association with a G protein-coupled receptor. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2851358/v1 (2023).

  52. Berriman, J. & Unwin, N. Analysis of transient structures by cryo-microscopy combined with rapid mixing of spray droplets. Ultramicroscopy 56, 241–252 (1994).

    CAS  PubMed  Google Scholar 

  53. Chen, B. et al. Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy. Structure 23, 1097–1105 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaledhonkar, S., Fu, Z., White, H. & Frank, J. Time-resolved cryo-electron microscopy using a microfluidic chip. Methods Mol. Biol. 1764, 59–71 (2018).

    CAS  PubMed  Google Scholar 

  55. Feng, X. et al. A fast and effective microfluidic spraying-plunging method for high-resolution single-particle cryo-EM. Structure 25, 663–670.e663 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ménétret, J. F., Hofmann, W., Schröder, R. R., Rapp, G. & Goody, R. S. Time-resolved cryo-electron microscopic study of the dissociation of actomyosin induced by photolysis of photolabile nucleotides. J. Mol. Biol. 219, 139–144 (1991).

    PubMed  Google Scholar 

  57. Yoder, N. et al. Light-coupled cryo-plunger for time-resolved cryo-EM. J. Struct. Biol. 212, 107624 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Punjani, A. & Fleet, D. 3D flexible refinement: structure and motion of flexible proteins from cryo-EM. Microsc. Microanal. 28, 1218–1218 (2022).

    ADS  Google Scholar 

  59. Nakane, T., Kimanius, D., Lindahl, E. & Scheres, S. H. W. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. eLife 7, e36861 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 18, 176–185 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Frank, J. & Ourmazd, A. Continuous changes in structure mapped by manifold embedding of single-particle data in cryo-EM. Methods 100, 61–67 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Dashti, A. et al. Retrieving functional pathways of biomolecules from single-particle snapshots. Nat. Commun. 11, 4734 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hilger, D. et al. Structural insights into differences in G protein activation by family A and family B GPCRs. Science https://doi.org/10.1126/science.aba3373 (2020).

  64. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    PubMed  Google Scholar 

  65. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS  PubMed  Google Scholar 

  66. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  67. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    CAS  PubMed  Google Scholar 

  68. Tomasello, G., Armenia, I. & Molla, G. The Protein Imager: a full-featured online molecular viewer interface with server-side HQ-rendering capabilities. Bioinformatics 36, 2909–2911 (2020).

    CAS  PubMed  Google Scholar 

  69. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    ADS  CAS  Google Scholar 

  71. Robertson, M. J., van Zundert, G. C. P., Borrelli, K. & Skiniotis, G. GemSpot: a pipeline for robust modeling of ligands into Cryo-EM maps. Structure https://doi.org/10.1016/j.str.2020.04.018 (2020).

  72. Kluyver, T. et al. Jupyter Notebooks - a publishing format for reproducible computational workflows. in International Conference on Electronic Publishing (eds Loizides, F. & Schmidt, B.) 87–90 (IOS Press, 2016).

  73. Pérez-Hernández, G. & Hildebrand, P. W. mdciao: accessible analysis and visualization of molecular dynamics simulation data. Preprint at bioRxiv https://doi.org/10.1101/2022.07.15.500163 (2022).

  74. Peisley, A. & Skiniotis, G. 2D projection analysis of GPCR complexes by negative stain electron microscopy. Methods Mol. Biol. 1335, 29–38 (2015).

    PubMed  Google Scholar 

  75. Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    CAS  PubMed  Google Scholar 

  76. Dror, R. O. et al. Identification of two distinct inactive conformations of the β2-adrenergic receptor reconciles structural and biochemical observations. Proc. Natl Acad. Sci. USA 106, 4689–4694 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    ADS  CAS  Google Scholar 

  78. Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015).

    ADS  Google Scholar 

  81. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). 27-38.

    CAS  PubMed  Google Scholar 

  82. Rose, A. S. & Hildebrand, P. W. NGL Viewer: a web application for molecular visualization. Nucleic Acids Res. 43, W576–W579 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Tiemann, J. K. S., Guixà-González, R., Hildebrand, P. W. & Rose, A. S. MDsrv: viewing and sharing molecular dynamics simulations on the web. Nat. Methods 14, 1123–1124 (2017).

    CAS  PubMed  Google Scholar 

  84. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    ADS  PubMed  Google Scholar 

  85. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    ADS  CAS  Google Scholar 

  86. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    ADS  CAS  Google Scholar 

  87. Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    CAS  Google Scholar 

  88. McGibbon, R. T. et al. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528–1532 (2015).

  89. Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2, 559–572 (1901).

    Google Scholar 

  90. Hotelling, H. Analysis of a complex of statistical variables into principal components. J Educ Psychol 24, 417–441 (1933).

    Google Scholar 

  91. Scherer, M. K. et al. PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models. J. Chem. Theory Comput. 11, 5525–5542 (2015).

    CAS  PubMed  Google Scholar 

  92. d’Errico, M., Facco, E., Laio, A. & Rodriguez, A. Automatic topography of high-dimensional data sets by non-parametric density peak clustering. Inf. Sci. 560, 476–492 (2021).

    MathSciNet  Google Scholar 

  93. Pérez-Hernández, G., Batebi, H., & Hildebrand, P. W. Molecular simulation data associated with the manuscript ‘Time-resolved cryo-EM of G protein activation by a GPCR’. Zenodo https://doi.org/10.5281/zenodo.10548787 (2024).

  94. Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by equipment access through the Stanford Cryo-Electron Microscopy Center (cEMc). This work was funded by National Institutes of Health grants K99HL16140601 (to M.M.P.-S.), R01GM083118 (to G.S. and B.K.K.) and R01NS028471 (to B.K.K.) and Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) DFG grants GRK 1910 and GM 13/14-1 (to P.G.) and SFB1423, project number 421152132, subproject C01, Stiftung Charité and the Einstein Center Digital for Future (to P.W.H.). We acknowledge the scientific support and HPC resources provided by the Erlangen National High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) under NHR project p101ae. NHR funding is provided by federal and Bavarian state authorities. NHR@FAU hardware is partially funded by the German Research Foundation (DFG)-440719683.

Author information

Authors and Affiliations

Authors

Contributions

M.M.P.-S. prepared cryo-EM grids, collected, analysed and processed cryo-EM data to generate final cryo-EM reconstructions, built and refined atomic models, collected and processed negative-stain EM data, analysed data, prepared figures and wrote the manuscript. G.P.-H. performed data analysis of cryo-EM models and MD simulations and contributed to figure development. H.B. performed MD simulations and data analysis and contributed to figure development. Y.G. prepared complex and prepared cryo-EM grids and generated a preliminary cryo-EM reconstruction for the 5 s GTP time point. G.E. prepared cryo-EM grids, collected, analysed and generated preliminary reconstructions for the 3D-classified nucleotide-free states with the assistance of A.B.S. G.E. and D.H. optimized conditions to obtain stable complexes for the study. D.H. purified and prepared β2AR–Gs complexes. O.P. collected cryo-EM data for the 5 s GTP time point. M.C. purified β2AR and Gs, and prepared β2AR–Gs complexes. F.H. purified Gs and assisted complex preparation. L.M. synthesized c-Epi. P.G. supervised the synthesis of c-Epi. B.K.K. oversaw protein purification and β2AR–Gs complexation. P.W.H. supervised molecular dynamics studies. G.S. oversaw cryo-EM studies and conceived and supervised the project. M.M.P.-S. and G.S. wrote the manuscript.

Corresponding author

Correspondence to Georgios Skiniotis.

Ethics declarations

Competing interests

G.S. is a co-founder of, and consultant for, Deep Apple Therapeutics. B.K.K. is a co-founder of, and consultant for, ConfometRx.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Cryo-EM processing and reconstruction of β2AR-GsEMPTY.

a, Flow chart outlining the cryo-EM processing of β2AR-GsEMPTY complex using cryoSPARC29,65. Local refinement reconstructions are shown with a Gaussian filtered map outline to show micelle and AHD densities. b, Local resolution of projections used in final cryo-EM reconstructions. See Supplementary Fig. 1 for associated 3DFSC94 curves, directional orientation, power spectra, and angular distribution maps; and see Supplementary Table 2 for a table of sphericity scores.

Extended Data Fig. 2 Dynamic residency of Gα AHD in open and closed positions.

a, Measurement of the real time of vitrification using a Vitrobot. The Vitrobot timing is the sum of user programmed blot time and wait time, 2 sec (4.95 sec ± 0.026 S.E.M., n = 10), 7 sec (9.99 sec ± 0.029 S.E.M., n = 10), 14 sec (17.02 sec ± 0.040 S.E.M., n = 10), where n indicates number of measurements recorded. Individual data points shown. b-h, To determine the residency of the AHD between open and closed positions in cryo-EM reconstructions, the AHD was docked into frames 1 (maximally open AHD) and 20 (maximally closed AHD) of each 3DVA trajectory (c-d, f-h) or 3D classes ordered from left, class A, to right, class T, by percent contribution of particles from the 17 sec dataset (e), a region of 6 Å from the docked structures was used to define ‘fully open’ or ‘fully closed’ respectively, b, and the volume of cryo-EM map at a threshold level of 0.05 that was enclosed in the defined regions was determined, c-g. i, Location of Gα AHD in relation to Gβ. The crystal structure (PDB:3SN6) locates the Gα AHD (grey) adjacent to Gβ blades 1 (red) and 2 (orange) and interacting with blade 2. In contrast, the location of the cryo-EM density that corresponds to the AHD lies adjacent to Gβ blades 2 and 3 (yellow) in both the nucleotide-free and GTP conditions. The cryo-EM structure of NTSR1-Gi also has an open AHD adjacent to blades 2 and 3, but in a different orientation. Structures have been aligned to Gβ. In the middle panels, the cryo-EM density envelope (Gaussian filtered, σ = 2) of the unsharpened map is shown with the density corresponding to the location of the AHD shaded in grey.

Extended Data Fig. 3 Cryo-EM processing and reconstruction of β2AR-GsGTP(5sec).

a, Flow chart outlining the cryo-EM processing of β2AR-GsGTP(5sec) complex using cryoSPARC29,65. Local refinement reconstructions are shown with a Gaussian-filtered map outline to show micelle and AHD densities. b, Local resolution of projections used in final cryo-EM reconstructions. See Supplementary Fig. 1 for associated 3DFSC94 curves, directional orientation, power spectra, and angular distribution maps; and see Supplementary Table 2 for a table of sphericity scores.

Extended Data Fig. 4 Cryo-EM processing and reconstruction of β2AR-GsGTP(10sec).

a, Flow chart outlining the cryo-EM processing of β2AR-GsGTP(10sec) complex using cryoSPARC29,65. Local refinement reconstructions are shown with a Gaussian filtered map outline to show micelle and AHD densities. b, Local resolution of projections used in final cryo-EM reconstructions. See Supplementary Fig. 1 for associated 3DFSC94 curves, directional orientation, power spectra, and angular distribution maps; and see Supplementary Table 2 for a table of sphericity scores.

Extended Data Fig. 5 Cryo-EM processing and reconstruction of β2AR-GsGTP(17sec).

a, Flow chart outlining the cryo-EM processing of β2AR-GsGTP(17sec) complex using cryoSPARC29,65. Local refinement reconstructions are shown with a Gaussian filtered map outline to show micelle and AHD densities. b, Local resolution of projections used in final cryo-EM reconstructions. See Supplementary Fig. 1 2 for associated 3DFSC94 curves, directional orientation, power spectra, and angular distribution maps; and see Supplementary Table 2 for a table of sphericity scores.

Extended Data Fig. 6 Cryo-EM processing and reconstruction of β2AR-GsGTP(Merged).

a, Flow chart outlining the cryo-EM processing of β2AR-GsGTP(Merged) complex using cryoSPARC29,65. Local refinement reconstructions are shown with a Gaussian filtered map outline to show micelle and AHD densities. The percent contribution of particles from each dataset to each local refinement is shown next to each reconstruction (orange, 5 sec.; blue, 10 sec.; green, 17 sec.). b, Local resolution of projections used in final cryo-EM reconstructions. See Supplementary Fig. 1 for associated 3DFSC94 curves, directional orientation, power spectra, and angular distribution maps; and see Supplementary Table 2 for a table of sphericity scores.

Extended Data Fig. 7 Cryo-EM processing and reconstruction of β2AR-GsGTP(Merged) 3D classes.

a, Continuation of the flow chart in Extended Data Fig. 6 outlining the cryo-EM processing of β2AR-GsGTP(Merged) complex using cryoSPARC29,65. Local refinement reconstructions are shown with a Gaussian filtered map outline to show micelle and AHD densities. The percent contribution of particles from each dataset to each local refinement is shown next to each reconstruction (orange, 5 sec.; blue, 10 sec.; green, 17 sec.). b, Local resolution of projections used in final cryo-EM reconstructions arising from 3D classification of particles without alignment. See Supplementary Fig. 1 for associated 3DFSC94 curves, directional orientation, power spectra, and angular distribution maps; and see Supplementary Table 2 for a table of sphericity scores.

Extended Data Fig. 8 GTP-bound Gαs in the β2AR-Gs complex transitions to a similar structure as activated Gαs-GTPγS.

a-g, Structures comparing the overall architecture of the first and last frames of the β2AR-GsEMPTY and β2AR-GsGTP trajectories with ‘checkpoint’ crystal structures of nucleotide free β2AR-Gs complex PDB:3SN6 and activated Gαs-GTPγS. Models are aligned to the RHD. h, Rotation of Gs in relation to receptor (aligned) over structures of β2AR-GsGTP cryo-EM structural transition frames. i, Placement of α5 Phe in relation to hydrophobic pocket on RHD β-sheets. Rendering style inspired by Jang et al.19. The residue F376 of Frame 20 ( + GTP condition), in the bottom-middle panel, is translucent blue to indicate it has been built in as a likely position but is stubbed in our deposited molecular model of that frame. j-k, The transition state of US28-G11GDP captured in the process of nucleotide release is similar to that of β2AR-GsGTP (frame 20). l-m, Trace of the root-mean-square-deviation (RMSD) over the 20 β2AR-GsGTP structural transition frames. Structures have been aligned to the rigid elements of the Gαs-RHD, and the RMSD has been computed both for the Cα atoms of the whole Gαs-RHD (l) and just of the α5 helix (m). The traces show that for both the Gαs-RHD as a whole and the α5 helix, the early frames are structurally closer to PDB:3SN6, whereas the last three frames, from 18 onwards, are closer to PDB:1AZT.

Extended Data Fig. 9 Local refinement of β2AR-GsGTP(Merged).

a, 2D class averages arising from the 47,951 particles contributing to frame 20 of the β2AR-GsGTP(Merged) reconstruction sorted into 100 2D classes. All classes appear to have intact receptor micelle and G protein in the complex. b, Focused cryo-EM reconstructions of β2AR receptor. c, Local resolution of projections used in final cryo-EM reconstructions. See Supplementary Fig. 1 for associated angular distribution maps.

Extended Data Fig. 10 Molecular Dynamics simulations of β2AR-GsGTP intermediate structures.

a Weakened interactions of β2AR and Gs in simulations seeded by later cryo-EM intermediate structures. Chord diagrams show interactions between receptor regions (purple) with Gα regions (gold) coarse-grained to domain segments. Interactions are defined as residue pairs having at least one pair of heavy atoms less than 4 Å apart. Each chord diagram is generated using all the data from triplicate 3 μsec MD trajectories for each seed/condition. The average sum of total contacts for each triplicate #16–20 are 41.6, 35.4, 30.6, 28.2, and 20.6, respectively. b-g, Quantification of movement of TM5 (b, c) and TM6 (d, e) on the extracellular and intracellular sides of β2AR; of the ionic lock with contact frequencies at 4 Å shown inset (f), and of c-Epi ligand (g). Dashed vertical lines represent values of seed structures. h, Sampling of ligand poses over the MD trajectories shown both as discrete transitions between poses (color-coded time traces, see adjacent ligand pose key below panel), as well as in terms of RMSD to the initial pose (solid black line). i, Principal component analysis of the sampled ligand poses, with the positions of selected representative poses superimposed as color-coded circled numbers. j, Superimposition of selected ligand poses shown in ‘i’, showing coverage of the entire ligand binding pocket volume shaded in light purple. k, Representative models of selected ligand pose clusters. TM6 shown in solid purple, c-Epi ligand in orange, transparent lilac colored cloud represents the volume sampled by the ligand across all MD trajectories. The extracellular half of TM7 is hidden to show ligand binding pocket. See also Supplementary Table 6 for detailed population information of ligand poses.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papasergi-Scott, M.M., Pérez-Hernández, G., Batebi, H. et al. Time-resolved cryo-EM of G-protein activation by a GPCR. Nature (2024). https://doi.org/10.1038/s41586-024-07153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-024-07153-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing