Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Buoyant crystals halt the cooling of white dwarf stars

Abstract

White dwarfs are stellar remnants devoid of a nuclear energy source, gradually cooling over billions of years1,2 and eventually freezing into a solid state from the inside out3,4. Recently, it was discovered that a population of freezing white dwarfs maintains a constant luminosity for a duration comparable with the age of the universe5, signalling the presence of a powerful, yet unknown, energy source that inhibits the cooling. For certain core compositions, the freezing process is predicted to trigger a solid–liquid distillation mechanism, owing to the solid phase being depleted in heavy impurities6,7,8. The crystals thus formed are buoyant and float up, thereby displacing heavier liquid downward and releasing gravitational energy. Here we show that distillation interrupts the cooling for billions of years and explains all the observational properties of the unusual delayed population. With a steady luminosity surpassing that of some main-sequence stars, these white dwarfs defy their conventional portrayal as dead stars. Our results highlight the existence of peculiar merger remnants9,10 and have profound implications for the use of white dwarfs in dating stellar populations11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observational Gaia colour-magnitude Hertzsprung–Russell diagram of white dwarfs within 150 pc.
Fig. 2: Schematic representation of two scenarios of white dwarf crystallization.
Fig. 3: Observed and simulated distributions of high-mass white dwarfs along their cooling tracks.
Fig. 4: Evolving surface luminosity and central composition of high-mass white dwarf models.

Similar content being viewed by others

Data availability

The Gaia data are publicly available on the Gaia archive (https://gea.esac.esa.int/archive). Cooling sequences calculated for this work are provided at https://doi.org/10.5281/zenodo.10201676, as are the DQ model atmosphere synthetic magnitudes.

Code availability

The population-synthesis code is provided along with the cooling sequences at https://doi.org/10.5281/zenodo.10201676. We have opted not to make publicly available the highly specialized and multipurpose STELUM code because of its complexity.

References

  1. Althaus, L. G., Córsico, A. H., Isern, J. & García-Berro, E. Evolutionary and pulsational properties of white dwarf stars. Astron. Astrophys. Rev. 18, 471–566 (2010).

    Article  ADS  Google Scholar 

  2. Saumon, D., Blouin, S. & Tremblay, P.-E. Current challenges in the physics of white dwarf stars. Phys. Rep. 988, 1–63 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  3. van Horn, H. M. Crystallization of white dwarfs. Astrophys. J. 151, 227 (1968).

    Article  ADS  Google Scholar 

  4. Tremblay, P.-E. et al. Core crystallization and pile-up in the cooling sequence of evolving white dwarfs. Nature 565, 202–205 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Cheng, S., Cummings, J. D. & Ménard, B. A cooling anomaly of high-mass white dwarfs. Astrophys. J. 886, 100 (2019).

    Article  ADS  CAS  Google Scholar 

  6. Isern, J., Hernanz, M., Mochkovitch, R. & García-Berro, E. The role of the minor chemical species in the cooling of white dwarfs. Astron. Astrophys. 241, L29–L32 (1991).

    ADS  CAS  Google Scholar 

  7. Segretain, L. Three-body crystallization diagrams and the cooling of white dwarfs. Astron. Astrophys. 310, 485–488 (1996).

    ADS  CAS  Google Scholar 

  8. Blouin, S., Daligault, J. & Saumon, D. 22Ne phase separation as a solution to the ultramassive white dwarf cooling anomaly. Astrophys. J. Lett. 911, L5 (2021).

    Article  ADS  CAS  Google Scholar 

  9. Hollands, M. A. et al. An ultra-massive white dwarf with a mixed hydrogen–carbon atmosphere as a likely merger remnant. Nat. Astron. 4, 663–669 (2020).

    Article  ADS  Google Scholar 

  10. Shen, K. J., Blouin, S. & Breivik, K. The Q branch cooling anomaly can be explained by mergers of white dwarfs and subgiant stars. Astrophys. J. Lett. 955, L33 (2023).

    Article  ADS  Google Scholar 

  11. Winget, D. E. et al. An independent method for determining the age of the universe. Astrophys. J. Lett. 315, L77 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Fontaine, G., Brassard, P. & Bergeron, P. The potential of white dwarf cosmochronology. Publ. Astron. Soc. Pac. 113, 409–435 (2001).

    Article  ADS  Google Scholar 

  13. Gaia Collaboration. Gaia Data Release 2. Observational Hertzsprung-Russell diagrams. Astron. Astrophys. 616, A10 (2018).

    Article  Google Scholar 

  14. Althaus, L. G., García-Berro, E., Isern, J., Córsico, A. H. & Miller Bertolami, M. M. New phase diagrams for dense carbon-oxygen mixtures and white dwarf evolution. Astron. Astrophys. 537, A33 (2012).

    Article  ADS  Google Scholar 

  15. Blouin, S., Daligault, J., Saumon, D., Bédard, A. & Brassard, P. Toward precision cosmochronology. A new C/O phase diagram for white dwarfs. Astron. Astrophys. 640, L11 (2020).

    Article  ADS  CAS  Google Scholar 

  16. Bauer, E. B. Carbon-oxygen phase separation in Modules for Experiments in Stellar Astrophysics (MESA) white dwarf models. Astrophys. J. 950, 115 (2023).

    Article  ADS  Google Scholar 

  17. Kilic, M. et al. The 100 pc white dwarf sample in the SDSS footprint. Astrophys. J. 898, 84 (2020).

    Article  ADS  CAS  Google Scholar 

  18. Bauer, E. B., Schwab, J., Bildsten, L. & Cheng, S. Multi-gigayear white dwarf cooling delays from clustering-enhanced gravitational sedimentation. Astrophys. J. 902, 93 (2020).

    Article  ADS  CAS  Google Scholar 

  19. Camisassa, M. E. et al. Forever young white dwarfs: when stellar ageing stops. Astron. Astrophys. 649, L7 (2021).

    Article  ADS  Google Scholar 

  20. Fleury, L., Caiazzo, I. & Heyl, J. The cooling of massive white dwarfs from Gaia EDR3. Mon. Not. R. Astron. Soc. 511, 5984–5993 (2022).

    Article  ADS  CAS  Google Scholar 

  21. Camisassa, M. E. et al. The evolution of ultra-massive white dwarfs. Astron. Astrophys. 625, A87 (2019).

    Article  CAS  Google Scholar 

  22. Blouin, S. & Daligault, J. Phase separation in ultramassive white dwarfs. Astrophys. J. 919, 87 (2021).

    Article  ADS  CAS  Google Scholar 

  23. Bédard, A., Brassard, P., Bergeron, P. & Blouin, S. On the spectral evolution of hot white dwarf stars. II. Time-dependent simulations of element transport in evolving white dwarfs with STELUM. Astrophys. J. 927, 128 (2022).

    Article  ADS  Google Scholar 

  24. Caplan, M. E., Horowitz, C. J. & Cumming, A. Neon cluster formation and phase separation during white dwarf cooling. Astrophys. J. Lett. 902, L44 (2020).

    Article  ADS  CAS  Google Scholar 

  25. Deloye, C. J. & Bildsten, L. Gravitational settling of 22Ne in liquid white dwarf interiors: cooling and seismological effects. Astrophys. J. 580, 1077–1090 (2002).

    Article  ADS  CAS  Google Scholar 

  26. García-Berro, E., Althaus, L. G., Córsico, A. H. & Isern, J. Gravitational settling of 22Ne and white dwarf evolution. Astrophys. J. 677, 473–482 (2008).

    Article  ADS  Google Scholar 

  27. Bédard, A., Bergeron, P., Brassard, P. & Fontaine, G. On the spectral evolution of hot white dwarf stars. I. A detailed model atmosphere analysis of hot white dwarfs from SDSS DR12. Astrophys. J. 901, 93 (2020).

    Article  ADS  Google Scholar 

  28. Romero, A. D., Kepler, S. O., Córsico, A. H., Althaus, L. G. & Fraga, L. Asteroseismological study of massive ZZ Ceti stars with fully evolutionary models. Astrophys. J. 779, 58 (2013).

    Article  ADS  Google Scholar 

  29. Koester, D., Kepler, S. O. & Irwin, A. W. New white dwarf envelope models and diffusion. Application to DQ white dwarfs. Astron. Astrophys. 635, A103 (2020).

    Article  ADS  CAS  Google Scholar 

  30. Althaus, L. G. et al. The formation of ultra-massive carbon-oxygen core white dwarfs and their evolutionary and pulsational properties. Astron. Astrophys. 646, A30 (2021).

    Article  CAS  Google Scholar 

  31. Zombeck, M. V. Handbook of Space Astronomy and Astrophysics 3rd edn (Cambridge Univ. Press, 2006).

  32. García-Berro, E. et al. A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes. Nature 465, 194–196 (2010).

    Article  ADS  PubMed  Google Scholar 

  33. Kilic, M. et al. The ages of the thin disk, thick disk, and the halo from nearby white dwarfs. Astrophys. J. 837, 162 (2017).

    Article  ADS  Google Scholar 

  34. Fantin, N. J. et al. The Canada–France Imaging Survey: reconstructing the Milky Way star formation history from its white dwarf population. Astrophys. J. 887, 148 (2019).

    Article  ADS  CAS  Google Scholar 

  35. Cukanovaite, E. et al. Local stellar formation history from the 40 pc white dwarf sample. Mon. Not. R. Astron. Soc. 522, 1643–1661 (2023).

    Article  ADS  Google Scholar 

  36. Isern, J. The star formation history in the solar neighborhood as told by massive white dwarfs. Astrophys. J. Lett. 878, L11 (2019).

    Article  ADS  CAS  Google Scholar 

  37. Salaris, M., Cassisi, S., Pietrinferni, A. & Hidalgo, S. The updated BASTI stellar evolution models and isochrones – III. White dwarfs. Mon. Not. R. Astron. Soc. 509, 5197–5208 (2022).

    Article  ADS  CAS  Google Scholar 

  38. Althaus, L. G. et al. Structure and evolution of ultra-massive white dwarfs in general relativity. Astron. Astrophys. 668, A58 (2022).

    Article  CAS  Google Scholar 

  39. Althaus, L. G. et al. Carbon–oxygen ultra-massive white dwarfs in general relativity. Mon. Not. R. Astron. Soc. 523, 4492–4503 (2023).

    Article  ADS  CAS  Google Scholar 

  40. Williams, K. A., Montgomery, M. H., Winget, D. E., Falcon, R. E. & Bierwagen, M. Variability in hot carbon-dominated atmosphere (hot DQ) white dwarfs: rapid rotation? Astrophys. J. 817, 27 (2016).

    Article  ADS  Google Scholar 

  41. Kilic, M. et al. The merger fraction of ultramassive white dwarfs. Mon. Not. R. Astron. Soc. 518, 2341–2353 (2023).

    Article  ADS  CAS  Google Scholar 

  42. Kippenhahn, R., Weigert, A. & Weiss, A. Stellar Structure and Evolution 2nd edn (Springer, 2012).

  43. Iglesias, C. A. & Rogers, F. J. Updated OPAL opacities. Astrophys. J. 464, 943 (1996).

    Article  ADS  CAS  Google Scholar 

  44. Cassisi, S., Potekhin, A. Y., Pietrinferni, A., Catelan, M. & Salaris, M. Updated electron-conduction opacities: the impact on low-mass stellar models. Astrophys. J. 661, 1094–1104 (2007).

    Article  ADS  Google Scholar 

  45. Blouin, S., Shaffer, N. R., Saumon, D. & Starrett, C. E. New conductive opacities for white dwarf envelopes. Astrophys. J. 899, 46 (2020).

    Article  ADS  CAS  Google Scholar 

  46. Böhm-Vitense, E. Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Mit 5 Textabbildungen. Z. Astrophys. 46, 108 (1958).

    ADS  Google Scholar 

  47. Tassoul, M., Fontaine, G. & Winget, D. E. Evolutionary models for pulsation studies of white dwarfs. Astrophys. J. Suppl. Ser. 72, 335–386 (1990).

    Article  ADS  CAS  Google Scholar 

  48. Rohrmann, R. D., Althaus, L. G., García-Berro, E., Córsico, A. H. & Miller Bertolami, M. M. Outer boundary conditions for evolving cool white dwarfs. Astron. Astrophys. 546, A119 (2012).

    Article  ADS  Google Scholar 

  49. Stanton, L. G. & Murillo, M. S. Ionic transport in high-energy-density matter. Phys. Rev. E 93, 043203 (2016).

    Article  ADS  PubMed  Google Scholar 

  50. Caplan, M. E., Bauer, E. B. & Freeman, I. F. Accurate diffusion coefficients for dense white dwarf plasma mixtures. Mon. Not. R. Astron. Soc. 513, L52–L56 (2022).

    Article  ADS  CAS  Google Scholar 

  51. Camisassa, M. E. et al. The effect of 22Ne diffusion in the evolution and pulsational properties of white dwarfs with solar metallicity progenitors. Astrophys. J. 823, 158 (2016).

    Article  ADS  Google Scholar 

  52. Althaus, L. G., García-Berro, E., Córsico, A. H., Miller Bertolami, M. M. & Romero, A. D. On the formation of hot DQ white dwarfs. Astrophys. J. Lett. 693, L23–L26 (2009).

    Article  ADS  CAS  Google Scholar 

  53. Coutu, S. et al. Analysis of helium-rich white dwarfs polluted by heavy elements in the Gaia era. Astrophys. J. 885, 74 (2019).

    Article  ADS  CAS  Google Scholar 

  54. Isern, J., García-Berro, E., Hernanz, M. & Chabrier, G. The energetics of crystallizing white dwarfs revisited again. Astrophys. J. 528, 397–400 (2000).

    Article  ADS  CAS  Google Scholar 

  55. Blouin, S. & Daligault, J. Direct evaluation of the phase diagrams of dense multicomponent plasmas by integration of the Clapeyron equations. Phys. Rev. E 103, 043204 (2021).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  56. Salaris, M. et al. The cooling of CO white dwarfs: influence of the internal chemical distribution. Astrophys. J. 486, 413–419 (1997).

    Article  ADS  CAS  Google Scholar 

  57. Fuentes, J. R., Cumming, A., Castro-Tapia, M. & Anders, E. H. Heat transport and convective velocities in compositionally driven convection in neutron star and white dwarf interiors. Astrophys. J. 950, 73 (2023).

    Article  ADS  Google Scholar 

  58. Montgomery, M. H. & Dunlap, B. H. Fluid mixing during phase separation in crystallizing white dwarfs. Astrophys. J. 961, 197 (2023).

    Article  ADS  Google Scholar 

  59. Salaris, M. & Cassisi, S. Chemical element transport in stellar evolution models. R. Soc. Open Sci. 4, 170192 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  60. Hughto, J. et al. Direct molecular dynamics simulation of liquid-solid phase equilibria for a three-component plasma. Phys. Rev. E 86, 066413 (2012).

    Article  ADS  CAS  Google Scholar 

  61. Cheng, S., Cummings, J. D., Ménard, B. & Toonen, S. Double white dwarf merger products among high-mass white dwarfs. Astrophys. J. 891, 160 (2020).

    Article  ADS  CAS  Google Scholar 

  62. Schwab, J. Evolutionary models for the remnant of the merger of two carbon-oxygen core white dwarfs. Astrophys. J. 906, 53 (2021).

    Article  ADS  CAS  Google Scholar 

  63. Hurley, J. R., Pols, O. R. & Tout, C. A. Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity. Mon. Not. R. Astron. Soc. 315, 543–569 (2000).

    Article  ADS  CAS  Google Scholar 

  64. Cummings, J. D., Kalirai, J. S., Tremblay, P. E., Ramirez-Ruiz, E. & Choi, J. The white dwarf initial–final mass relation for progenitor stars from 0.85 to 7.5 M. Astrophys. J. 866, 21 (2018).

    Article  ADS  Google Scholar 

  65. Holberg, J. B. & Bergeron, P. Calibration of synthetic photometry using DA white dwarfs. Astron. J 132, 1221–1233 (2006).

    Article  ADS  CAS  Google Scholar 

  66. Tremblay, P. E., Bergeron, P. & Gianninas, A. An improved spectroscopic analysis of DA white dwarfs from the Sloan Digital Sky Survey Data Release 4. Astrophys. J. 730, 128 (2011).

    Article  ADS  Google Scholar 

  67. Dufour, P., Bergeron, P. & Fontaine, G. Detailed spectroscopic and photometric analysis of DQ white dwarfs. Astrophys. J. 627, 404–417 (2005).

    Article  ADS  CAS  Google Scholar 

  68. Blouin, S., Dufour, P., Thibeault, C. & Allard, N. F. A new generation of cool white dwarf atmosphere models. IV. Revisiting the spectral evolution of cool white dwarfs. Astrophys. J. 878, 63 (2019).

    Article  ADS  CAS  Google Scholar 

  69. Gentile Fusillo, N. P. et al. A catalogue of white dwarfs in Gaia EDR3. Mon. Not. R. Astron. Soc. 508, 3877–3896 (2021).

    Article  ADS  Google Scholar 

  70. Dufour, P. et al. in Proc. 20th European White Dwarf Workshop (eds Tremblay, P.-E., Gaensicke, B. & Marsh, T.) (Astronomical Society of the Pacific, 2017).

  71. Bildsten, L. & Hall, D. M. Gravitational settling of 22Ne in liquid white dwarf interiors. Astrophys. J. Lett. 549, L219–L223 (2001).

    Article  ADS  CAS  Google Scholar 

  72. Binney, J., Dehnen, W. & Bertelli, G. The age of the solar neighbourhood. Mon. Not. R. Astron. Soc. 318, 658–664 (2000).

    Article  ADS  Google Scholar 

  73. Bland-Hawthorn, J. & Gerhard, O. The galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016).

    Article  ADS  CAS  Google Scholar 

  74. Mor, R., Robin, A. C., Figueras, F., Roca-Fàbrega, S. & Luri, X. Gaia DR2 reveals a star formation burst in the disc 2–3 Gyr ago. Astron. Astrophys. 624, L1 (2019).

    Article  ADS  CAS  Google Scholar 

  75. Cassisi, S., Potekhin, A. Y., Salaris, M. & Pietrinferni, A. Electron conduction opacities at the transition between moderate and strong degeneracy: uncertainties and impacts on stellar models. Astron. Astrophys. 654, A149 (2021).

    Article  ADS  CAS  Google Scholar 

  76. Fleury, L., Caiazzo, I. & Heyl, J. The origin of ultramassive white dwarfs: hints from Gaia EDR3. Mon. Not. R. Astron. Soc. 520, 364–374 (2023).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the referees for their valuable comments that have improved this manuscript. We are grateful to P.-E. Tremblay for insightful discussions on the Q-branch problem and for a careful reading of our manuscript. We thank K. Shen, E. Bauer and H. Jia for helpful discussions that improved the work presented in this manuscript. This work has benefited from discussions at the KITP programme ‘White Dwarfs as Probes of the Evolution of Planets, Stars, the Milky Way and the Expanding Universe’ and was supported in part by the National Science Foundation under grant no. NSF PHY-1748958. A.B. is a Postdoctoral Fellow of the Natural Sciences and Engineering Research Council of Canada (NSERC) and also acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101002408). S.B. was supported by a Banting Postdoctoral Fellowship and a CITA (Canadian Institute for Theoretical Astrophysics) National Fellowship. S.C. acknowledges the support from the Martin A. and Helen Chooljian Member Fund and the Fund for Natural Sciences at the Institute for Advanced Study, and thanks S. Yao for suggesting the comparison to the luminosity of M dwarfs and for her constant encouragement and inspiration.

Author information

Authors and Affiliations

Authors

Contributions

A.B., S.B. and S.C. planned this project, contributed new insights and research threads and wrote the manuscript. A.B. implemented the distillation process in the STELUM code and performed the cooling calculations. S.B. provided a prescription for the implementation of distillation, performed the population-synthesis simulations and subsequent data analysis and calculated model atmospheres. S.C. provided expertise on the observational properties of the Q branch and identified the importance of using a thin He layer and a realistic distillation profile. S.B. provided expertise on the physics of fractionation in dense plasmas. The listed order of the equally contributing authors was chosen randomly.

Corresponding authors

Correspondence to Antoine Bédard or Simon Blouin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Leandro Althaus, Jordi Isern and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Chemical evolution of a 1.15 M white dwarf.

The 16O and 22Ne mass-fraction abundance profiles are shown at four different stages in the evolution of the star.

Extended Data Fig. 2 Distance distribution of white dwarfs.

Only high-confidence white dwarf candidates (PWD ≥ 0.9) in the Gaia EDR3 white dwarf catalogue69 are considered. The CDF is broken down into three MG bins that span the range of magnitudes covered in our analysis of the Q branch. For the faintest bin, the sample has a very high level of completeness up to a distance of 150 pc.

Extended Data Fig. 3 Modelled surface luminosity for different scenarios.

The surface luminosity is shown as a function of cooling age for 1.05, 1.15 and 1.25 M C–O white dwarf models. The dotted lines correspond to the nominal case considered in Fig. 4a. The solid lines represent cooling sequences in which a standard composition7 is used instead of a post-merger profile (a), in which distillation is only partially completed (b) and in which X(22Ne) = 0.06 and distillation is turned off (c). Post-merger chemical profiles are assumed in panels b and c.

Extended Data Fig. 4 Effect of the composition on the predicted pile-up.

Same as Fig. 3 but with different assumptions for the composition of the extra-delayed C–O population.

Extended Data Fig. 5 Effect of a different implementation of distillation on the predicted pile-up.

Same as Fig. 3 but assuming partial completion of the distillation process. For the extra-delayed C–O population, our default post-merger composition profile is assumed.

Extended Data Fig. 6 Effect of distillation on the abundance profile.

The final 22Ne mass-fraction profile for a 1.15 M white dwarf with an initial post-merger stratification is shown for two different scenarios. The composition profile is shown at the end of the crystallization process.

Extended Data Fig. 7 Effect of microscopic diffusion on the predicted pile-up.

Same as Fig. 3 but with X(22Ne) = 0.06 and no distillation (microscopic diffusion only). For the extra-delayed C–O population, our default post-merger composition profile is assumed.

Extended Data Fig. 8 Effect of the age distribution on the predicted pile-up.

Same as Fig. 3 but using a non-uniform stellar age distribution based on Mor et al.74.

Extended Data Fig. 9 Effect of the merger time delay on the predicted pile-up.

Same as Fig. 3 but assuming no merger time delay for all stars (a) and doubling the merger time delay used in our fiducial simulation (b).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bédard, A., Blouin, S. & Cheng, S. Buoyant crystals halt the cooling of white dwarf stars. Nature 627, 286–288 (2024). https://doi.org/10.1038/s41586-024-07102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07102-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing