Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ligand-channel-enabled ultrafast Li-ion conduction

Subjects

Abstract

Li-ion batteries (LIBs) for electric vehicles and aviation demand high energy density, fast charging and a wide operating temperature range, which are virtually impossible because they require electrolytes to simultaneously have high ionic conductivity, low solvation energy and low melting point and form an anion-derived inorganic interphase1,2,3,4,5. Here we report guidelines for designing such electrolytes by using small-sized solvents with low solvation energy. The tiny solvent in the secondary solvation sheath pulls out the Li+ in the primary solvation sheath to form a fast ion-conduction ligand channel to enhance Li+ transport, while the small-sized solvent with low solvation energy also allows the anion to enter the first Li+ solvation shell to form an inorganic-rich interphase. The electrolyte-design concept is demonstrated by using fluoroacetonitrile (FAN) solvent. The electrolyte of 1.3 M lithium bis(fluorosulfonyl)imide (LiFSI) in FAN exhibits ultrahigh ionic conductivity of 40.3 mS cm−1 at 25 °C and 11.9 mS cm−1 even at −70 °C, thus enabling 4.5-V graphite||LiNi0.8Mn0.1Co0.1O2 pouch cells (1.2 Ah, 2.85 mAh cm−2) to achieve high reversibility (0.62 Ah) when the cells are charged and discharged even at −65 °C. The electrolyte with small-sized solvents enables LIBs to simultaneously achieve high energy density, fast charging and a wide operating temperature range, which is unattainable for the current electrolyte design but is highly desired for extreme LIBs. This mechanism is generalizable and can be expanded to other metal-ion battery electrolytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrolyte design and solvent-screening strategies.
Fig. 2: Physical properties and ion-transport mechanism of FAN-based electrolyte.
Fig. 3: Electrochemical performances of FAN-based electrolyte at extreme conditions.
Fig. 4: FAN-based electrolyte/electrode interphase analysis.

Similar content being viewed by others

References

  1. Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Rodrigues, M.-T. F. et al. A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2, 17108 (2017).

    Article  ADS  CAS  Google Scholar 

  4. Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

    Article  ADS  Google Scholar 

  5. Fan, X. & Wang, C. High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Yao, N., Chen, X., Fu, Z.-H. & Zhang, Q. Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries. Chem. Rev. 122, 10970–11021 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Gupta, A. & Manthiram, A. Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10, 2001972 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, S., Xu, K. & Jow, T. The low temperature performance of Li-ion batteries. J. Power Sources 115, 137–140 (2003).

    Article  ADS  CAS  Google Scholar 

  10. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article  ADS  CAS  Google Scholar 

  11. Huang, Y. et al. Eco-friendly electrolytes via a robust bond design for high-energy Li metal batteries. Energy Environ. Sci. 15, 4349–4361 (2022).

    Article  CAS  Google Scholar 

  12. Fan, X. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 882–890 (2019).

    Article  ADS  CAS  Google Scholar 

  13. Yao, Y. et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097 (2021).

    Article  CAS  Google Scholar 

  14. Jiang, L. et al. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew. Chem. Int. Ed. 60, 3402–3406 (2021).

    Article  CAS  Google Scholar 

  15. Self, J., Fong, K. D. & Persson, K. A. Transport in superconcentrated LiPF6 and LiBF4/propylene carbonate electrolytes. ACS Energy Lett. 4, 2843–2849 (2019).

    Article  CAS  Google Scholar 

  16. Siegel, D. J., Nazar, L., Chiang, Y.-M., Fang, C. & Balsara, N. P. Establishing a unified framework for ion solvation and transport in liquid and solid electrolytes. Trends Chem. 3, 807–818 (2021).

    Article  CAS  Google Scholar 

  17. Aihara, Y., Sugimoto, K., Price, W. S. & Hayamizu, K. Ionic conduction and self-diffusion near infinitesimal concentration in lithium salt-organic solvent electrolytes. J. Chem. Phys. 113, 1981–1991 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Borodin, O. & Smith, G. D. Li+ transport mechanism in oligo(ethylene oxide)s compared to carbonates. J. Solut. Chem. 36, 803–813 (2007).

    Article  CAS  Google Scholar 

  19. Yamada, Y., Wang, J., Ko, S., Watanabe, E. & Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019).

    Article  ADS  CAS  Google Scholar 

  20. Borodin, O. et al. Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes. ACS Nano 11, 10462–10471 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Okoshi, M., Chou, C. P. & Nakai, H. Theoretical analysis of carrier ion diffusion in superconcentrated electrolyte solutions for sodium-ion batteries. J. Phys. Chem. B 122, 2600–2609 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Borodin, O., Self, J., Persson, K. A., Wang, C. & Xu, K. Uncharted waters: super-concentrated electrolytes. Joule 4, 69–100 (2020).

    Article  CAS  Google Scholar 

  23. Sun, C. et al. 50C fast-charge Li-ion batteries using a graphite anode. Adv. Mater. 34, 2206020 (2022).

    Article  CAS  Google Scholar 

  24. Xu, J. et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614, 694–700 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Ren, X. et al. Role of inner solvation sheath within salt–solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proc. Natl Acad. Sci. 117, 28603–28613 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Ue, M. & Mori, S. Mobility and ionic association of lithium salts in a propylene carbonate-ethyl methyl carbonate mixed solvent. J. Electrochem. Soc. 142, 2577–2581 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Ren, Y. et al. Oxide electrolytes for lithium batteries. J. Am. Ceram. Soc. 98, 3603–3623 (2015).

    Article  CAS  Google Scholar 

  29. Yang, Y. et al. Liquefied gas electrolytes for wide-temperature lithium metal batteries. Energy Environ. Sci. 13, 2209–2219 (2020).

    Article  CAS  Google Scholar 

  30. Dong, X., Guo, Z., Guo, Z., Wang, Y. & Xia, Y. Organic batteries operated at −70°C. Joule 2, 902–913 (2018).

    Article  CAS  Google Scholar 

  31. Seo, D. M. et al. Electrolyte solvation and ionic association III. Acetonitrile-lithium salt mixtures–transport properties. J. Electrochem. Soc. 160, A1061–A1070 (2013).

    Article  CAS  Google Scholar 

  32. Kreuer, K.-D., Rabenau, A. & Weppner, W. Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors. Angew. Chem. Int. Ed. Engl. 21, 208–209 (1982).

    Article  Google Scholar 

  33. Xing, L. et al. Deciphering the ethylene carbonate–propylene carbonate mystery in Li-ion batteries. Acc. Chem. Res. 51, 282–289 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Yao, Y.-X. et al. Unlocking charge transfer limitations for extreme fast charging of Li-ion batteries. Angew. Chem. Int. Ed. 62, e202214828 (2023).

    Article  CAS  Google Scholar 

  35. Yang, X. et al. Enabling stable high‐voltage LiCoO2 operation by using synergetic interfacial modification strategy. Adv. Funct. Mater. 30, 2004664 (2020).

    Article  CAS  Google Scholar 

  36. Zhi, H., Xing, L., Zheng, X., Xu, K. & Li, W. Understanding how nitriles stabilize electrolyte/electrode interface at high voltage. J. Phys. Chem. Lett. 8, 6048–6052 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Gao, Y. et al. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 5, 534–542 (2020).

    Article  ADS  CAS  Google Scholar 

  38. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Hayashi, A., Hama, S., Morimoto, H., Tatsumisago, M. & Minami, T. Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 84, 477–479 (2001).

    Article  CAS  Google Scholar 

  40. Fang, C., Mistry, A., Srinivasan, V., Balsara, N. P. & Wang, R. Elucidating the molecular origins of the transference number in battery electrolytes using computer simulations. JACS Au 3, 306–315 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fong, K. D., Self, J., McCloskey, B. D. & Persson, K. A. Onsager transport coefficients and transference numbers in polyelectrolyte solutions and polymerized ionic liquids. Macromolecules 53, 9503–9512 (2020).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (22161142017, 22072134, U21A2081, 20727001, 91121020, 21327802, 21973102 and 22003071), the Natural Science Foundation of Zhejiang Province (LR23B030002 and LZ21B030002), and the Fundamental Research Funds for the Central Universities (2021FZZX001-09). M.M.R. and E.H. are supported by the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), the Vehicle Technologies Office (VTO) of the U.S. Department of Energy (DOE) through the Advanced Battery Materials Research (BMR) Program under contract no. DE-SC0012704. This research used beamline 23-ID-2 of the National Synchrotron Light Source II, a U.S. DOE Office of Science user facility operated for the DOE Office of Science by Brookhaven National Laboratory under contract number DE-SC0012704.

Author information

Authors and Affiliations

Authors

Contributions

D.L., R.L. and X.F. conceived the idea and designed the experiments. D.L., L.L., S.Y., Y.H., C.S., S.Z., H.Z. and J.Z. conducted the electrochemical experiments and characterizations, with the assistance of X.X., L.F., L.C. and X.F. M.M.R. performed XAS under the guidance of E.H. R.L. provided the theoretical calculations. P.Y. and J.W. performed the two-dimensional infrared spectroscopy test. D.L., T.D., J.W., E.H., C.W. and X.F. prepared the manuscript, with input from all the co-authors. All authors endorsed the final version of the manuscript.

Corresponding authors

Correspondence to Enyuan Hu, Chunsheng Wang or Xiulin Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Chong Yan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–10, Supplementary Figs. 1–45, Supplementary Tables 1–6 and Supplementary References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Li, R., Rahman, M.M. et al. Ligand-channel-enabled ultrafast Li-ion conduction. Nature 627, 101–107 (2024). https://doi.org/10.1038/s41586-024-07045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07045-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing