Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fractional quantum anomalous Hall effect in multilayer graphene

Abstract

The fractional quantum anomalous Hall effect (FQAHE), the analogue of the fractional quantum Hall effect1 at zero magnetic field, is predicted to exist in topological flat bands under spontaneous time-reversal-symmetry breaking2,3,4,5,6. The demonstration of FQAHE could lead to non-Abelian anyons that form the basis of topological quantum computation7,8,9. So far, FQAHE has been observed only in twisted MoTe2 at a moiré filling factor v > 1/2 (refs. 10,11,12,13). Graphene-based moiré superlattices are believed to host FQAHE with the potential advantage of superior material quality and higher electron mobility. Here we report the observation of integer and fractional QAH effects in a rhombohedral pentalayer graphene–hBN moiré superlattice. At zero magnetic field, we observed plateaus of quantized Hall resistance \({R}_{xy}=\frac{h}{v{{\rm{e}}}^{2}}\) at v = 1, 2/3, 3/5, 4/7, 4/9, 3/7 and 2/5 of the moiré superlattice, respectively, accompanied by clear dips in the longitudinal resistance Rxx. Rxy equals \(\frac{2h}{{{\rm{e}}}^{2}}\) at v = 1/2 and varies linearly with v, similar to the composite Fermi liquid in the half-filled lowest Landau level at high magnetic fields14,15,16. By tuning the gate-displacement field D and v, we observed phase transitions from composite Fermi liquid and FQAH states to other correlated electron states. Our system provides an ideal platform for exploring charge fractionalization and (non-Abelian) anyonic braiding at zero magnetic field7,8,9,17,18,19, especially considering a lateral junction between FQAHE and superconducting regions in the same device20,21,22.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device configuration, topological flat band and phase diagram of the rhombohedral pentalayer graphene–hBN moiré superlattice.
Fig. 2: IQAHE.
Fig. 3: FQAHEs.
Fig. 4: Anomalous Hall effect and phase transitions at half-filling.

Similar content being viewed by others

Data availability

The data shown in the main figures are available from https://doi.org/10.7910/DVN/T4QPNP. Other data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).

    Article  ADS  PubMed  Google Scholar 

  3. Tang, E., Mei, J. W. & Wen, X. G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

    Article  ADS  PubMed  Google Scholar 

  4. Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. X 1, 021014 (2011).

    Google Scholar 

  5. Sheng, D. N., Gu, Z. C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).

    Article  ADS  PubMed  Google Scholar 

  7. Moore, G. & Read, N. Nonabelions in the fractional quantum hall effect. Nucl. Phys. B 360, 362–396 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  8. Wen, X. G. Non-Abelian statistics in the fractional quantum Hall states. Phys. Rev. Lett. 66, 802 (1991).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  9. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature https://doi.org/10.1038/s41586-023-06289-w (2023).

  11. Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature https://doi.org/10.1038/S41586-023-06536-0 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature https://doi.org/10.1038/S41586-023-06452-3 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).

    CAS  Google Scholar 

  14. Willett, R. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Jain, J. K. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Halperin, B. I., Lee, P. A. & Read, N. Theory of the half-filled Landau level. Phys. Rev. B 47, 7312 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).

    Article  CAS  Google Scholar 

  18. Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  19. Kundu, H. K., Biswas, S., Ofek, N., Umansky, V. & Heiblum, M. Anyonic interference and braiding phase in a Mach-Zehnder interferometer. Nat. Phys. 19, 515–521 (2023).

    Article  CAS  Google Scholar 

  20. Lindner, N. H., Berg, E., Refael, G. & Stern, A. Fractionalizing Majorana fermions: non-Abelian statistics on the edges of abelian quantum Hall states. Phys. Rev. X 2, 041002 (2012).

    Google Scholar 

  21. Clarke, D. J., Alicea, J. & Shtengel, K. Exotic non-Abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013).

    Article  ADS  PubMed  Google Scholar 

  22. Vaezi, A. Fractional topological superconductor with fractionalized Majorana fermions. Phys. Rev. B Condens. Matter Mater. Phys. 87, 035132 (2013).

    Article  ADS  Google Scholar 

  23. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  24. Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator. Science 367, 895–900 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Wu, F., Lovorn, T., Tutuc, E., Martin, I. & Macdonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Li, H., Kumar, U., Sun, K. & Lin, S. Z. Spontaneous fractional Chern insulators in transition metal dichalcogenide moiré superlattices. Phys. Rev. Res. 3, L032070 (2021).

    Article  CAS  Google Scholar 

  30. Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

  31. Yu, H., Chen, M. & Yao, W. Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors. Natl Sci. Rev. 7, 12–20 (2020).

    Article  PubMed  Google Scholar 

  32. Crépel, V. & Fu, L. Anomalous Hall metal and fractional Chern insulator in twisted transition metal dichalcogenides. Phys. Rev. B 107, L201109 (2023).

    Article  ADS  Google Scholar 

  33. Ledwith, P. J., Tarnopolsky, G., Khalaf, E. & Vishwanath, A. Fractional Chern insulator states in twisted bilayer graphene: an analytical approach. Phys Rev Res 2, 023237 (2020).

    Article  CAS  Google Scholar 

  34. Abouelkomsan, A., Liu, Z. & Bergholtz, E. J. Particle-hole duality, emergent fermi liquids, and fractional Chern insulators in moiré flatbands. Phys. Rev. Lett. 124, 106803 (2020).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  35. Devakul, T. et al. Magic-angle helical trilayer graphene. Sci. Adv. 9, eadi6063 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, Y. H., Mao, D., Cao, Y., Jarillo-Herrero, P. & Senthil, T. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B 99, 075127 (2019).

    Article  ADS  CAS  Google Scholar 

  37. Gao, Q., Dong, J., Ledwith, P., Parker, D. & Khalaf, E. Untwisting moiré physics: almost ideal bands and fractional Chern insulators in periodically strained monolayer graphene. Phys. Rev. Lett. 131, 096401 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Repellin, C. & Senthil, T. Chern bands of twisted bilayer graphene: fractional Chern insulators and spin phase transition. Phys. Rev. Res. 2, 023238 (2020).

  39. Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koshino, M. & McCann, E. Trigonal warping and Berry’s phase Nπ in ABC-stacked multilayer graphene. Phys. Rev. B 80, 165409 (2009).

    Article  ADS  Google Scholar 

  42. Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

    Article  ADS  PubMed  Google Scholar 

  43. Park, Y., Kim, Y., Chittari, B. L. & Jung, J. Topological flat bands in rhombohedral tetralayer and multilayer graphene on hexagonal boron nitride moire superlattices. Phys. Rev. B. 108, 155406 (2023).

  44. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Smoleński, T. et al. Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595, 53–57 (2021).

    Article  ADS  PubMed  Google Scholar 

  47. Goldman, H., Reddy, A. P., Paul, N. & Fu, L. Zero-field composite Fermi liquid in twisted semiconductor bilayers. Phys. Rev. Lett. 131, 136501 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Dong, J., Wang, J., Ledwith, P. J., Vishwanath, A. & Parker, D. E. Composite Fermi liquid at zero magnetic field in twisted MoTe2. Phys. Rev. Lett. 131, 136502 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Barkeshli, M. & McGreevy, J. Continuous transitions between composite Fermi liquid and Landau Fermi liquid: a route to fractionalized Mott insulators. Phys. Rev. B. Condens. Matter Mater. Phys. 86, 075136 (2012).

    Article  ADS  Google Scholar 

  50. Song, X.-Y., Zhang, Y.-H. & Senthil, T. Phase transitions out of quantum Hall states in moire TMD bilayers. Preprint at https://arxiv.org/abs/2308.10903 (2023).

  51. Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional materials. Nano Lett. 18, 8011–8015 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Bao, W. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys. 7, 948–952 (2011).

    Article  CAS  Google Scholar 

  54. Zhang, L., Zhang, Y., Camacho, J., Khodas, M. & Zaliznyak, I. The experimental observation of quantum Hall effect of l = 3 chiral quasiparticles in trilayer graphene. Nat. Phys. 7, 953–957 (2011).

    Article  CAS  Google Scholar 

  55. Zou, K., Zhang, F., Clapp, C., MacDonald, A. H. & Zhu, J. Transport studies of dual-gated ABC and ABA trilayer graphene: band gap opening and band structure tuning in very large perpendicular electric fields. Nano Lett. 13, 369–373 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Lee, Y. et al. Competition between spontaneous symmetry breaking and single-particle gaps in trilayer graphene. Nat. Commun. 5, 5656 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Myhro, K. et al. Large tunable intrinsic gap in rhombohedral-stacked tetralayer graphene at half filling. 2D Mater. 5, 045013 (2018).

    Article  CAS  Google Scholar 

  58. Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Han, T. et al. Correlated insulator and Chern insulators in pentalayer rhombohedral stacked graphene. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01520-1 (2023).

  62. Han, T. et al. Orbital multiferroicity in pentalayer rhombohedral graphene. Nature 623, 41–47 (2023).

  63. Liu, K. et al. Interaction-driven spontaneous broken-symmetry insulator and metals in ABCA tetralayer graphene. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01558-1 (2023).

  64. Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article  CAS  Google Scholar 

  65. Chen, G. et al. Tunable orbital ferromagnetism at noninteger filling of a moiré superlattice. Nano Lett. 22, 238–245 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Sample, H. H., Bruno, W. J., Sample, S. B. & Sichel, E. K. Reverse‐field reciprocity for conducting specimens in magnetic fields. J. Appl. Phys. 61, 1079–1084 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with X.G. Wen, T. Senthil, P. Lee, F. Wang and R. Ashoori. We thank D. Laroche for assistance with early investigation of a related sample. L.J. acknowledges support from a Sloan Fellowship. Work by T.H., J.Y. and J.S. was supported by NSF grant no. DMR-2225925. The device fabrication of this work was supported by the STC Center for Integrated Quantum Materials, NSF grant no. DMR-1231319 and was carried out at the Harvard Center for Nanoscale Systems and MIT.Nano. Part of the device fabrication was supported by USD(R&E) under contract no. FA8702-15-D-0001. K.W. and T.T. acknowledge support from the JSPS KAKENHI (grant nos. 20H00354, 21H05233 and 23H02052) and World Premier International Research Center Initiative (WPI), MEXT, Japan. A.P.R. was supported by the Air Force Office of Scientific Research (AFOSR) under award no. FA9550-22-1-0432. L.F. was supported by the STC Center for Integrated Quantum Materials (CIQM) under NSF award no. DMR-1231319.

Author information

Authors and Affiliations

Authors

Contributions

L.J. supervised the project. Z.L. and T.H. performed the d.c. magneto-transport measurement. T.H. and Y.Y. fabricated the devices. J.Y., J.S., Z.L. and T.H. helped with installing and testing the dilution refrigerator. A.P.R. and L.F. performed the calculations. K.W. and T.T. grew hBN crystals. All authors discussed the results and wrote the paper.

Corresponding author

Correspondence to Long Ju.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Anindya Das and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Phase diagram and optical micrographs of our devices.

a&b corresponds to the hole-doping and electron-doping sides, respectively. The hole side shows resistive states at filling factors v = −2 and –4, while the electron side shows correlated insulating states at v = 2, 3 and 4 at D < 0—opposite side of D at which we observed IQAHE and FQAHEs. c. Device 1 from which the data in the main text is taken. Scale bar: 3 µm d. Device 2, the data of which is included in Extended Data Fig. 8 & 9. Scale bar:3 µm.

Extended Data Fig. 2 Gate displacement field dependence of Rxx and Rxy at fractional filling factors for Device 1.

Each FQAH state shows quantized Rxy in a range of D, while the center of this range for different states shifts with the filling factor. The D corresponding to the minimum of Rxx also shifts with the filling factor in the same direction.

Extended Data Fig. 3 Temperature dependence of FQAH states.

af. Temperature dependence of Rxy. All states still remain quantized at 400 mK. gl. Temperature dependence of Rxx.

Extended Data Fig. 4 Symmetrization/anti-symmetrization method to obtain Fig. 1b & c.

a,b & d,e. Raw data of R13,24 and R23,14 measured as functions of displacement field and moiré filling factor v at B = ±100 mT. The insets show the measurement pin configurations. c&f. Rxy and Rxx obtained after the symmetrization/anti-symmetrization process.

Extended Data Fig. 5 Symmetrization/anti-symmetrization method to obtain magnetic hysteresis data at v = 3/5.

a, b, d, e, g, h, j & k. Raw data of R13,24, R24,13, R14,23 and R23,14 measured as functions of magnetic field. The insets show the measurement pin configurations. c, f, i&l. Rxy and Rxx obtained after the symmetrization process. m&n. Rxy and Rxx extracted after the symmetrization/anti-symmetrization process using the Onsager reciprocal relation.

Extended Data Fig. 6 Rxy line scans at small magnetic fields.

a. Rxy line scan versus moiré filling factor v at D/ε0 = 0.9 V/nm. Curves with rainbow colors represent multiple scans at B = 0. Black curves show scans at B = ± 100 mT. B. Rxy line scans versus v at B = 10 mT, 50 mT, 100 mT.

Extended Data Fig. 7 Rxx line scans at varying magnetic field.

a & b. Rxx line scans with moiré filling factor v < 1/2 and v > 1/2, respectively. Dips at fractional filling factors shift with magnetic field as indicated by the dashed lines. Curves are equally shifted vertically for clarity.

Extended Data Fig. 8 Data from Device 2.

a & b. Phase diagrams of the device revealed by symmetrized Rxx and anti-symmetrized Rxy at B = ± 0.1 T as functions of charge density ne (filling factor v) and D. The temperature at the mixing chamber of dilution refrigerator is 10 mK. Clear dips of Rxx can be seen at filling factors of the moiré superlattice v = 1, 2/3 and 2/5 (indicated by the dashed lines and arrows), where Rxy shows plateaus of values.

Extended Data Fig. 9 Magnetic hysteresis data from Device 2.

ac. Magnetic hysteresis measurements at v = 1, 2/3 and 2/5. Clear hysteresis and values of Rxy at \(\frac{{\rm{h}}}{{\rm{v}}{{\rm{e}}}^{2}}\) can been seen.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Han, T., Yao, Y. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024). https://doi.org/10.1038/s41586-023-07010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-07010-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing