Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A lanthanide-rich kilonova in the aftermath of a long gamma-ray burst

Abstract

Observationally, kilonovae are astrophysical transients powered by the radioactive decay of nuclei heavier than iron, thought to be synthesized in the merger of two compact objects1,2,3,4. Over the first few days, the kilonova evolution is dominated by a large number of radioactive isotopes contributing to the heating rate2,5. On timescales of weeks to months, its behaviour is predicted to differ depending on the ejecta composition and the merger remnant6,7,8. Previous work has shown that the kilonova associated with gamma-ray burst 230307A is similar to kilonova AT2017gfo (ref. 9), and mid-infrared spectra revealed an emission line at 2.15 micrometres that was attributed to tellurium. Here we report a multi-wavelength analysis, including publicly available James Webb Space Telescope data9 and our own Hubble Space Telescope data, for the same gamma-ray burst. We model its evolution up to two months after the burst and show that, at these late times, the recession of the photospheric radius and the rapidly decaying bolometric luminosity (Lbolt−2.7±0.4, where t is time) support the recombination of lanthanide-rich ejecta as they cool.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The environment of GRB 230307A.
Fig. 2: SED of the GRB counterpart.
Fig. 3: The multi-wavelength counterpart of GRB 230307A.
Fig. 4: Comparison of the bolometric lightcurve with different models.

Similar content being viewed by others

Data availability

Swift/XRT products are available from the online GRB repository (https://www.swift.ac.uk/xrt_products). Swift/UVOT data are available from Swift Data Access (https://www.swift.ac.uk/archive). X-shooter data are available from ESO Science Archive Facility (https://archive.eso.org). HST and JWST data are available from Mikulski Archive for Space Telescopes (https://mast.stsci.edu). Chandra data are available from Chandra Data Archive (https://cda.harvard.edu/chaser). The TESS lightcurve is available from TessTransients archive (https://tess.mit.edu/public/tesstransients). Gemini data are available from Gemini Observatory Archive (https://archive.gemini.edu). XMM-Newton data are available from XMM-Newton Science Archive (https://www.cosmos.esa.int/web/xmm-newton/xsa). Fermi/GBM data are available from Fermi Science Support Center (FSSC) FTP archive https://heasarc.gsfc.nasa.gov/FTP/fermi/data/gbm. All the processed data are available upon request to the corresponding authors. Source data are provided with this paper.

Code availability

Results can be reproduced using standard free analysis packages. Methods are fully described. Codes used to produce figures can be made available upon request.

References

  1. Eichler, D., Livio, M., Piran, T. & Schramm, D. N. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340, 126–128 (1989).

    Article  ADS  Google Scholar 

  2. Li, L.-X. & Paczyński, B. Transient events from neutron star mergers. Astrophys. J. 507, L59–L62 (1998).

    Article  ADS  Google Scholar 

  3. Freiburghaus, C., Rosswog, S. & Thielemann, F. K. R-process in neutron star mergers. Astrophys. J. 525, L121–L124 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Korobkin, O., Rosswog, S., Arcones, A. & Winteler, C. On the astrophysical robustness of the neutron star merger r-process. Mon. Not. R. Astron. Soc. 426, 1940–1949 (2012).

    Article  ADS  CAS  Google Scholar 

  5. Barnes, J., Kasen, D., Wu, M.-R. & Martínez-Pinedo, G. Radioactivity and thermalization in the ejecta of compact object mergers and their impact on kilonova light curves. Astrophys. J. 829, 110 (2016).

    Article  ADS  Google Scholar 

  6. Hotokezaka, K. & Nakar, E. Radioactive heating rate of r-process elements and macronova light curve. Astrophys. J. 891, 152 (2020).

    Article  ADS  CAS  Google Scholar 

  7. Zhu, J.-P. et al. Long-duration gamma-ray burst and associated kilonova emission from fast-spinning black hole–neutron star mergers. Astrophys. J. 936, L10 (2022).

    Article  ADS  Google Scholar 

  8. Wollaeger, R. T. et al. Impact of pulsar and fallback sources on multifrequency kilonova models. Astrophys. J. 880, 22 (2019).

    Article  ADS  CAS  Google Scholar 

  9. Levan, A. et al. Heavy element production in a compact object merger observed by JWST. Nature https://doi.org/10.1038/s41586-023-06759-1 (2023).

  10. Sun, H. et al. Magnetar emergence in a peculiar gamma-ray burst from a compact star merger. Preprint at https://arxiv.org/abs/2307.05689 (2023).

  11. Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The observed offset distribution of gamma-ray bursts from their host galaxies: a robust clue to the nature of the progenitors. Astron. J. 123, 1111–1148 (2002).

    Article  ADS  Google Scholar 

  12. Freedman, W. L. et al. The Carnegie-Chicago Hubble Program. VIII. An independent determination of the Hubble constant based on the tip of the red giant branch. Astrophys. J. 882, 34 (2019).

    Article  ADS  CAS  Google Scholar 

  13. Waxman, E., Ofek, E. O. & Kushnir, D. Late-time kilonova light curves and implications to GW170817. Astrophys. J. 878, 93 (2019).

    Article  ADS  CAS  Google Scholar 

  14. Kasliwal, M. M. et al. Spitzer mid-infrared detections of neutron star merger GW170817 suggests synthesis of the heaviest elements. Mon. Not. R. Astron. Soc. 510, L7–L12 (2022).

    Article  ADS  CAS  Google Scholar 

  15. Troja, E. et al. A nearby long gamma-ray burst from a merger of compact objects. Nature 612, 228–231 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gehrels, N. et al. A new γ-ray burst classification scheme from GRB060614. Nature 444, 1044–1046 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Yang, B. et al. A possible macronova in the late afterglow of the long-short burst GRB 060614. Nat. Commun. 6, 7323 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Jin, Z.-P. et al. The light curve of the macronova associated with the long-short burst GRB 060614. Astrophys. J. 811, L22 (2015).

    Article  ADS  Google Scholar 

  19. Rastinejad, J. C. et al. A kilonova following a long-duration gamma-ray burst at 350 Mpc. Nature 612, 223–227 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Yang, J. et al. A long-duration gamma-ray burst with a peculiar origin. Nature 612, 232–235 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Ryan, G., van Eerten, H., Piro, L. & Troja, E. Gamma-ray burst afterglows in the multimessenger era: numerical models and closure relations. Astrophys. J. 896, 166 (2020).

    Article  ADS  CAS  Google Scholar 

  22. Valenti, S. et al. The diversity of type II supernova versus the similarity in their progenitors. Mon. Not. R. Astron. Soc. 459, 3939–3962 (2016).

    Article  ADS  CAS  Google Scholar 

  23. Barnes, J. et al. Kilonovae across the nuclear physics landscape: the impact of nuclear physics uncertainties on r-process-powered emission. Astrophys. J. 918, 44 (2021).

    Article  ADS  CAS  Google Scholar 

  24. Frey, L. H. et al. The Los Alamos Supernova Light-curve Project: computational methods. Astrophys. J. 204, 16 (2013).

    Article  Google Scholar 

  25. Fontes, C. J., Fryer, C. L., Hungerford, A. L., Wollaeger, R. T. & Korobkin, O. A line-binned treatment of opacities for the spectra and light curves from neutron star mergers. Mon. Not. R. Astron. Soc. 493, 4143–4171 (2020).

    Article  ADS  CAS  Google Scholar 

  26. Fontes, C. J., Fryer, C. L., Wollaeger, R. T., Mumpower, M. R. & Sprouse, T. M. Actinide opacities for modelling the spectra and light curves of kilonovae. Mon. Not. R. Astron. Soc. 519, 2862–2878 (2023).

    Article  ADS  CAS  Google Scholar 

  27. Zhu, Y. et al. Californium-254 and kilonova light curves. Astrophys. J. 863, L23 (2018).

    Article  ADS  Google Scholar 

  28. Holmbeck, E. M. et al. Superheavy elements in kilonovae. Astrophys. J. 951, L13 (2023).

    Article  ADS  Google Scholar 

  29. Waxman, E., Ofek, E. O., Kushnir, D. & Gal-Yam, A. Constraints on the ejecta of the GW170817 neutron star merger from its electromagnetic emission. Mon. Not. R. Astron. Soc. 481, 3423–3441 (2018).

    Article  ADS  CAS  Google Scholar 

  30. Arnaud, K. A. XSPEC: the first ten years. In Astronomical Data Analysis Software and Systems V, Conference Series Vol. 101 (eds Jacoby, G. H. & Barnes, J.) 17–20 (Astronomical Society of the Pacific, 1996).

  31. Willingale, R., Starling, R. L. C., Beardmore, A. P., Tanvir, N. R. & O’Brien, P. T. Calibration of X-ray absorption in our Galaxy. Mon. Not. R. Astron. Soc. 431, 394–404 (2013).

    Article  ADS  Google Scholar 

  32. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  33. Waxman, E., Ofek, E. O. & Kushnir, D. Strong NIR emission following the long duration GRB 211211A: dust heating as an alternative to a kilonova. Preprint at https://arxiv.org/abs/2206.10710 (2022).

  34. Krühler, T. et al. The SEDs and host galaxies of the dustiest GRB afterglows. Astron. Astrophys. 534, A108 (2011).

    Article  Google Scholar 

  35. Sneppen, A. et al. Spherical symmetry in the kilonova AT2017gfo/GW170817. Nature 614, 436–439 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Levan, A. J. et al. GRB 230307A: JWST NIRSpec observations, possible higher redshift. GRB Coord. Netw. Circ. No. 33580 (2023).

  37. Windhorst, R. A. et al. JWST PEARLS. Prime Extragalactic Areas for Reionization and Lensing Science: project overview and first results. Astron. J. 165, 13 (2023).

    Article  ADS  Google Scholar 

  38. Chang, H.-Y. & Kim, H.-I. On spatial distribution of short gamma-ray bursts from extragalactic magnetar flares. J. Astron. Space Sci. 19, 1–6 (2002).

    Article  ADS  Google Scholar 

  39. Dichiara, S. et al. A luminous precursor in the extremely bright GRB 230307A. Astrophys. J. 954, L29 (2023).

    Article  ADS  Google Scholar 

  40. Yang, J. et al. GRB 200415A: a short gamma-ray burst from a magnetar giant flare? Astrophys. J. 899, 106 (2020).

    Article  ADS  CAS  Google Scholar 

  41. Wang, Y., Xia, Z.-Q., Zheng, T.-C., Ren, J. & Fan, Y.-Z. A broken “α–intensity” relation caused by the evolving photosphere emission and the nature of the extraordinarily bright GRB 230307A. Astrophys. J. 953, L8 (2023).

    Article  ADS  Google Scholar 

  42. Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  43. O’Connor, B. et al. A deep survey of short GRB host galaxies over z ~ 0–2: implications for offsets, redshifts, and environments. Mon. Not. R. Astron. Soc. 515, 4890–4928 (2022).

    Article  ADS  Google Scholar 

  44. Jin, Z.-P. et al. A kilonova associated with GRB 070809. Nat. Astron. 4, 77–82 (2020).

    Article  ADS  CAS  Google Scholar 

  45. O’Connor, B., Beniamini, P. & Kouveliotou, C. Constraints on the circumburst environments of short gamma-ray bursts. Mon. Not. R. Astron. Soc. 495, 4782–4799 (2020).

    Article  ADS  Google Scholar 

  46. Norris, J. P. & Bonnell, J. T. Short gamma-ray bursts with extended emission. Astrophys. J. 643, 266–275 (2006).

    Article  ADS  CAS  Google Scholar 

  47. Dichiara, S. et al. Evidence of extended emission in GRB 181123B and other high-redshift short GRBs. Astrophys. J. 911, L28 (2021).

    Article  ADS  CAS  Google Scholar 

  48. Kennicutt, J. & Robert, C. Star formation in galaxies along the Hubble sequence. Ann. Rev. Astron. Astrophys. 36, 189–232 (1998).

    Article  ADS  CAS  Google Scholar 

  49. Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    Article  ADS  Google Scholar 

  50. Kobulnicky, H. A. & Kewley, L. J. Metallicities of 0.3<z<1.0 galaxies in the GOODS-North field. Astrophys. J. 617, 240–261 (2004).

    Article  ADS  CAS  Google Scholar 

  51. Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar population inference with Prospector. Astrophys. J. 254, 22 (2021).

    Article  CAS  Google Scholar 

  52. O’Connor, B. et al. A tale of two mergers: constraints on kilonova detection in two short GRBs at z ~ 0.5. Mon. Not. R. Astron. Soc. 502, 1279–1298 (2021).

    ADS  Google Scholar 

  53. Palmerio, J. T. et al. Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs. III. Stellar masses, star formation rates, and metallicities at z > 1. Astron. Astrophys. 623, A26 (2019).

    Article  CAS  Google Scholar 

  54. Whitaker, K. E., van Dokkum, P. G., Brammer, G. & Franx, M. The star formation mass sequence out to z = 2.5. Astrophys. J. 754, L29 (2012).

    Article  ADS  Google Scholar 

  55. Amati, L. et al. Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts. Astron. Astrophys. 390, 81–89 (2002).

    Article  ADS  Google Scholar 

  56. O’Connor, B. et al. A structured jet explains the extreme GRB 221009a. Sci. Adv. 9, eadi1405 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kouveliotou, C. et al. Identification of two classes of gamma-ray bursts. Astrophys. J. 413, L101 (1993).

    Article  ADS  CAS  Google Scholar 

  58. Becerra, R. L. et al. Deciphering the unusual stellar progenitor of GRB 210704A. Mon. Not. R. Astron. Soc. 522, 5204–5216 (2023).

    Article  ADS  CAS  Google Scholar 

  59. Clocchiatti, A., Suntzeff, N. B., Covarrubias, R. & Candia, P. The ultimate light curve of SN 1998bw/GRB 980425. Astron. J. 141, 163 (2011).

    Article  ADS  Google Scholar 

  60. Srinivasaragavan, G. P. et al. A sensitive search for supernova emission associated with the extremely energetic and nearby GRB 221009A. Astrophys. J. 949, L39 (2023).

    Article  ADS  Google Scholar 

  61. Perets, H. B. et al. A faint type of supernova from a white dwarf with a helium-rich companion. Nature 465, 322–325 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Kasliwal, M. M. et al. Rapidly decaying supernova 2010X: a candidate “.Ia” explosion. Astrophys. J. 723, L98–L102 (2010).

    Article  ADS  Google Scholar 

  63. Zhong, S.-Q., Li, L. & Dai, Z.-G. GRB 211211A: a neutron star-white dwarf merger? Astrophys. J. 947, L21 (2023).

    Article  ADS  Google Scholar 

  64. Fryer, C. L., Woosley, S. E., Herant, M. & Davies, M. B. Merging white dwarf/black hole binaries and gamma-ray bursts. Astrophys. J. 520, 650–660 (1999).

    Article  ADS  Google Scholar 

  65. Kaltenborn, M. A. R. et al. Abundances and transients from neutron star-white dwarf mergers. Astrophys. J. 956, 71 (2023).

    Article  ADS  Google Scholar 

  66. Bobrick, A., Zenati, Y., Perets, H. B., Davies, M. B. & Church, R. Transients from one white dwarf–neutron star/black hole mergers. Mon. Not. R. Astron. Soc. 510, 3758–3777 (2022).

    Article  ADS  CAS  Google Scholar 

  67. Lu, W. & Quataert, E. Late-time accretion in neutron star mergers: implications for short gamma-ray bursts and kilonovae. Mon. Not. R. Astron. Soc. 522, 5848–5861 (2023).

    Article  ADS  CAS  Google Scholar 

  68. Gao, H., Lei, W.-H., Zou, Y.-C., Wu, X.-F. & Zhang, B. A complete reference of the analytical synchrotron external shock models of gamma-ray bursts. New Astron. Rev. 57, 141–190 (2013).

    Article  ADS  Google Scholar 

  69. Metzger, B. D. Kilonovae. Living Rev. Relativ. 23, 1 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  70. Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014).

    Article  Google Scholar 

  71. Mereghetti, S., Rigoselli, M., Salvaterra, R., Tiengo, A. & Pacholski, D. P. XMM-Newton and INTEGRAL observations of the bright GRB 230307A: vanishing of the local absorption and limits on the dust in the Magellanic Bridge. Astrophys. J. 956, 97 (2023).

    Article  ADS  Google Scholar 

  72. Zhang, B. & Mészáros, P. Gamma-ray bursts: progress, problems & prospects. Int. J. Mod. Phys. A 19, 2385–2472 (2004).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council through the Consolidator grant BHianca (grant agreement ID 101002761) and, in part, by the National Science Foundation (under award number 2108950). This work was in part carried out at the Aspen Center for Physics, which is supported by National Science Foundation grant PHY-2210452. The development of afterglow models used in this work was partially supported by the European Union Horizon 2020 programme under the AHEAD2020 project (grant agreement number 871158). B.O. acknowledges useful discussions with J. Pierel and O. Fox regarding JWST analysis. M.I., G.S.H.P., S.-W.C., H.C. and M.J. acknowledge support from the National Research Foundation of Korea (NRF) grants, no. 2020R1A2C3011091 and no. 2021M3F7A1084525, funded by the Korea government (MSIT). C.R.B. acknowledges the financial support from CNPq (316072/2021-4) and from FAPERJ (grants 201.456/2022 and 210.330/2022) and the FINEP contract 01.22.0505.00 (ref.1891/22). C.R.B. made use of HPC Sci-Mind servers machines developed and supported by the CBPF AI LAB team. This research has made use of the KMTNet system operated by the Korea Astronomy and Space Science Institute (KASI) at three host sites of CTIO in Chile, SAAO in South Africa, and SSO in Australia. Data transfer from the host site to KASI and SNU was supported by the Korea Research Environment Open NETwork (KREONET). A.J.C.-T. acknowledges funding of the Spanish Ministry project PID2020-118491GB-I00/AEI/10.13039/501100011033. The observations included data obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia e Inovações (MCTI/LNA) do Brasil, the US National Science Foundation’s NOIRLab, the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU). The national facility capability for SkyMapper has been funded through ARC LIEF grant LE130100104 from the Australian Research Council, awarded to the University of Sydney, the Australian National University, Swinburne University of Technology, the University of Queensland, the University of Western Australia, the University of Melbourne, Curtin University of Technology, Monash University and the Australian Astronomical Observatory. SkyMapper is owned and operated by The Australian National University’s Research School of Astronomy and Astrophysics. The survey data were processed and provided by the SkyMapper Team at ANU. The SkyMapper node of the All-Sky Virtual Observatory (ASVO) is hosted at the National Computational Infrastructure (NCI). Development and support of the SkyMapper node of the ASVO has been funded in part by Astronomy Australia Limited (AAL) and the Australian Government through the Commonwealth’s Education Investment Fund (EIF) and National Collaborative Research Infrastructure Strategy (NCRIS), particularly the National eResearch Collaboration Tools and Resources (NeCTAR) and the Australian National Data Service Projects (ANDS).

Author information

Authors and Affiliations

Authors

Contributions

Y.-H.Y. led the analysis of the prompt emission, SEDs and multi-wavelength lightcurves. E.T. initiated the project, coordinated the observations and their interpretation. B.O. led the study of the host galaxy. C.R.B., A.J.C.-T., Y.H., C.D.K., M.M., F.N., I.P.-G. and J.H.G. acquired and reduced the data of the SOAR telescope. R.R. led the analysis of the radio data. B.O. reduced the JWST data. E.T. and B.O. acquired and reduced the HST data. E.T., B.O. and Y.-H.Y. acquired and reduced the XMM-Newton data. E.T. and Y.-H.Y. reduced the Swift data. Y.-H.Y. reduced the TESS data. M.I., G.S.H.P., M.J., S.-W.C., H.C. and C.-U.L. acquired and reduced the data of the KMTNet and RASA36 telescopes. E.T., J.D., K.D. and A.K. acquired and reduced the data of the PRIME telescope. B.O., S.D. and J.H.G. acquired and reduced the data of the Gemini telescope. J.H.G. and E.T. reduced the data of the X-shooter telescope. Y.-H.Y., G.R., H.v.E. and Z.-G.D. contributed to afterglow modelling and their physical interpretation. Z.-K.P. contributed to possible progenitors. C.L.F. contributed to the interpretation of the data. Y.-H.Y., E.T., B.O. and C.L.F. wrote the paper, with contributions from all authors.

Corresponding authors

Correspondence to Yu-Han Yang or Eleonora Troja.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Empirical model for the nIR, optical, and X-ray lightcurves.

The lightcurves are modeled using PL segments, Fνtαν−0.8. The gray lines represent the best-fit models. Different symbols indicate observations with different filters. Error bars and upper limits are 1σ c.l. and 3σ c.l., respectively.

Extended Data Fig. 2 Properties of the potential host galaxies.

a, Probability of chance coincidence for galaxies in the field of GRB 230307A. Likely unrelated galaxies are displayed as gray circles. The candidate host galaxies G*, LMC (purple crosses) and G1 (red star) are highlighted. b, Optical spectrum of the bright galaxy G1. The observed spectrum is shown in blue and the error spectrum in black. Line identifications are made at z = 0.0647 ± 0.0003. The spectrum is smoothed with a Savitzky-Golay filter of two pixels for display purposes. c,d, Spectral energy distribution of the bright galaxy G1. The model SED (blue line) and model photometry (blue squares) derived using Prospector are compared to the observed photometry (red circles). Filter bandpasses are shown at the bottom of panel c in gray. Fit residuals are shown in d. Error bars represent 1σ uncertainties.

Extended Data Fig. 3 Prompt emission properties of GRB 230307A.

a,b, Gamma-ray lightcurves of GRB 230307A (red) and GRB 211211A (dark) from Fermi/GBM in the energy range of 10−25 keV and 0.8−10 MeV with 0.2 s binsize. The purple shaded area roughly represents the time range of the initial pulse of the lightcurve, as depicted in the zoomed-in panel (c) with 5 ms binsize in the energy range 10–350 keV. d, The Amati-relation diagram. The plum/gray/green circles represent Type I (short) GRBs/Type II (long) GRBs/magnetar giant flares, and the corresponding color solid line and the area between dashed lines are the best-fit model and 95% c.l., respectively. GRB 230307A (whole burst) shifts following the red line when located at different redshifts. The red stars represent it at the three most probable host galaxies (G1, LMC and G*), while the GF is only reasonable when we treat the initial pulse as the main burst (zoom-in panel c). Hybrid GRB 211211A is shown in the blue circle. The purple shaded (z > 0.23)/hatched (z > 0.43) area is ruled out by the expansion velocity of the photosphere radius at T0 + 1.2 d/28.9 d being limited to less than the speed of light. The orange hatched area is ruled out by the SED (z 3.3). The red dashed line indicates the redshift where it departs from the 95% c.l. for the distribution of Type I GRBs. Error bars represent 1σ uncertainties.

Extended Data Fig. 4 Comparison of JWST and HST observations and supernova lightcurves at different redshifts.

The lightcurves of SN1998bw/GRB 98042559 (a), SN2022xiw/GRB 221009A60 (b), SN2005E61 and SN2010X62 (c) are employed as references for typical GRB-SNe, bright GRB-SNe and fast-evolving SNe. Error bars and upper limits are 1σ c.l. and 3σ c.l., respectively.

Extended Data Fig. 5 Results for a forward shock plus two-component kilonova model for Dataset 2.

a. Posterior probability distributions of parameters. b. The prior bounds and posterior medians for parameters. The values corresponding to the two kilonova components are denoted by the subscript 1 or 2. Uniform priors are employed for all parameters except for the electron index p, which is a truncated-Gaussian prior (2.46 ± 0.20) derived from the spectral index βX = 0.73 ± 0.10 (ref. 71) according to standard closure relations72. Error bars represent 1σ uncertainties.

Extended Data Fig. 6 Neodymium opacities in the 1−5 μm range at 3 temperatures: 0.24 eV, 0.17 eV and 0.07 eV.

In local thermodynamic equilibrium, these correspond to ionization fractions of 1.0 (T = 0.24 eV), 0.886 (T = 0.17 eV) and 10−6 (T = 0.07 eV). The material begins to recombine between 0.24 and 0.17 eV (2,000–2,500 K). As it recombines, the number of bound-bound lines in the 1–5 μm range decreases significantly, causing a drop in the opacity.

Extended Data Table 1 Infrared/optical/X-ray joint spectral fit results for power-law or afterglow plus blackbody model
Extended Data Table 2 Photometry of the bright galaxy G1
Extended Data Table 3 Summary of model fitting results
Extended Data Table 4 Model parameters, prior bounds and posterior medians from modeling of Dataset 1 and Dataset 2 with a forward shock (FS) plus a kilonova model (KN)

Supplementary information

Supplementary Information

The supplementary information includes the data reduction for multi-wavelength observations, empirical modelling of multi-wavelength lightcurves and discussions about kilonova bolometric luminosity. Supplementary tables are also provided in this file.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YH., Troja, E., O’Connor, B. et al. A lanthanide-rich kilonova in the aftermath of a long gamma-ray burst. Nature 626, 742–745 (2024). https://doi.org/10.1038/s41586-023-06979-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06979-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing