Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A recently formed ocean inside Saturn’s moon Mimas

Abstract

Moons potentially harbouring a global ocean are tending to become relatively common objects in the Solar System1. The presence of these long-lived global oceans is generally betrayed by surface modification owing to internal dynamics2. Hence, Mimas would be the most unlikely place to look for the presence of a global ocean3. Here, from detailed analysis of Mimas’s orbital motion based on Cassini data, with a particular focus on Mimas’s periapsis drift, we show that its heavily cratered icy shell hides a global ocean, at a depth of 20–30 kilometres. Eccentricity damping implies that the ocean is likely to be less than 25 million years old and still evolving. Our simulations show that the ocean–ice interface reached a depth of less than 30 kilometres only recently (less than 2–3 million years ago), a time span too short for signs of activity at Mimas’s surface to have appeared.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mimas measurements and ocean models.
Fig. 2: Mimas’s interior and orbital evolution.

Similar content being viewed by others

Data availability

Most astrometric data are already available from refs. 6,21 and references therein. The extra astrometric data of Mimas and Tethys that were obtained from three-dimensional complex-shape modelling are available on IMCCE FTP server at ftp://ftp.imcce.fr/pub/psf.

Code availability

All astrometric data derived from ISS images can be reproduced using our CAVIAR software available under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International. The software is available at www.imcce.fr/recherche/equipes/pegase/caviar.

References

  1. Castillo-Rogez, J. et al. Compositions and interior structures of the large moons of Uranus and implications for future spacecraft observations. J. Geophys. Res. Planets 128, e2022JE007432 (2023).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  2. Ćuk, M., Dones, L. & Nesvorný, D. Dynamical evidence for a late formation of Saturn’s moons. Astrophys. J. 820, 97 (2016).

    Article  ADS  Google Scholar 

  3. Rhoden, A. R. & Walker, M. E. The case for an ocean-bearing Mimas from tidal heating analysis. Icarus 376, 114872 (2022).

    Article  Google Scholar 

  4. Tajeddine, R. et al. Constraints on Mimas’ interior from Cassini ISS libration measurements. Science 346, 322–324 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Borderies, N. & Yoder, C. F. Phobos’ gravity field and its influence on its orbit and physical librations. Astron. Astrophys. 233, 235–251 (1990).

    ADS  Google Scholar 

  6. Lainey, V., Rambaux, N., Cooper, N. & Zhang, Q. Characterizing the interior of five inner Saturnian moons using Cassini ISS data. Astron. Astrophys. 670, L25 (2023).

    Article  ADS  Google Scholar 

  7. Viswanathan, V., Rambaux, N., Fienga, A., Laskar, J. & Gastineau, M. Observational constraint on the radius and oblateness of the lunar core–mantle boundary. Geophys. Res. Lett. 46, 7295–7303 (2019).

    Article  ADS  Google Scholar 

  8. Balmino, G. Gravitational potential harmonics from the shape of an homogeneous body. Celest. Mech. Dyn. Astron. 60, 331–364 (1994).

    Article  ADS  Google Scholar 

  9. Tobie, G., Grasset, O., Lunine, J. I., Mocquet, A. & Sotin, C. Titan’s internal structure inferred from a coupled thermal–orbital model. Icarus 175, 496–502 (2005).

    Article  CAS  ADS  Google Scholar 

  10. Tobie, G., Mocquet, A. & Sotin, C. Tidal dissipation within large icy satellites: applications to Europa and Titan. Icarus 177, 534–549 (2005).

    Article  ADS  Google Scholar 

  11. Cadek, O. et al. Long-term stability of Enceladus’ uneven ice shell. Icarus 319, 476–484 (2019).

    Article  ADS  Google Scholar 

  12. Ćuk, M. & El Moutamid, M. Three-body resonances in the Saturnian system. Astrophys. J. 926, L18 (2022).

  13. Baillié, K., Noyelles, B., Lainey, V., Charnoz, S. & Tobie, G. Formation of the Cassini Division—I. Shaping the rings by Mimas inward migration. Mon. Not. R. Astron. Soc. 486, 2933–2946 (2019).

    Article  ADS  Google Scholar 

  14. Noyelles, B., Baillié, K., Charnoz, S., Lainey, V. & Tobie, G. Formation of the Cassini Division—II. Possible histories of Mimas and Enceladus. Mon. Not. R. Astron. Soc. 486, 2947–2963 (2019).

    Article  ADS  Google Scholar 

  15. Wisdom, J. et al. Loss of a satellite could explain Saturn’s obliquity and young rings. Science 377, 1285–1289 (2022).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  16. Lainey, V. et al. Strong tidal dissipation in Saturn and constraints on Enceladus’ thermal state from astrometry. Astrophys. J. 752, 14 (2012).

  17. Lainey, V. et al. New constraints on Saturn’s interior from Cassini astrometric data. Icarus 281, 286–296 (2017).

    Article  ADS  Google Scholar 

  18. Lainey, V. et al. Resonance locking in giant planets indicated by the rapid orbital expansion of Titan. Nat. Astron. 4, 1053–1058 (2020).

    Article  ADS  Google Scholar 

  19. Zandanel, A. et al. Short lifespans of serpentinization in the rocky core of Enceladus: implications for hydrogen production. Icarus 364, 114461 (2021).

  20. Zandanel, A. et al. Geologically rapid aqueous mineral alteration at subfreezing temperatures in icy worlds. Nat. Astron. 6, 554–559 (2022).

    Article  ADS  Google Scholar 

  21. Cooper, N. J. et al. The Caviar software package for the astrometric reduction of Cassini ISS images: description and examples. Astron. Astrophys. 610, A2 (2018).

    Article  Google Scholar 

  22. Rambaux, N., Lainey, V., Cooper, N., Auzemery, L. & Zhang, Q. F. Spherical harmonic decomposition and interpretation of the shapes of the small Saturnian inner moons. Astron. Astrophys. 667, A78 (2022).

    Article  ADS  Google Scholar 

  23. Zhang, Q. F. et al. A comparison of centring algorithms in the astrometry of Cassini imaging science subsystem images and Anthe’s astrometric reduction. Mon. Not. R. Astron. Soc. 505, 5253–5259 (2021).

    Article  ADS  Google Scholar 

  24. Iess, L. et al. Measurement and implications of Saturn’s gravity field and ring mass. Science 364, aat2965 (2019).

    Article  ADS  Google Scholar 

  25. Iess, L. et al. The tides of Titan. Science 337, 457–459 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Iess, L. et al. The gravity field and interior structure of Enceladus. Science 344, 78–80 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Militzer, B. & Hubbard, W. Relation of gravity, winds, and the moment of inertia of Jupiter and Saturn. Planet. Sci. J. 4, 95 (2023).

  28. French, R. G. et al. Astrometry of Saturn’s satellites from the Hubble Space Telescope WFPC2. Publ. Astron. Soc. Pac. 118, 246–259 (2006).

    Article  ADS  Google Scholar 

  29. Jacobson, R. A. The orbits and masses of the Martian satellites and the libration of Phobos. Astron. J 139, 668–679 (2010).

    Article  ADS  Google Scholar 

  30. Lainey, V. et al. Interior properties of the inner Saturnian moons from space astrometry data. Icarus 326, 48–62 (2019).

    Article  ADS  Google Scholar 

  31. Van Hoolst, T., Rambaux, N., Karatekin, Ö., Dehant, V. & Rivoldini, A. The librations, shape, and icy shell of Europa. Icarus 195, 386–399 (2008).

    Article  ADS  Google Scholar 

  32. Rambaux, N., van Hoolst, T. & Karatekin, Ö. Librational response of Europa, Ganymede, and Callisto with an ocean for a non-Keplerian orbit. Astron. Astrophys. 527, A118 (2011).

    Article  Google Scholar 

  33. Richard, A., Rambaux, N. & Charnay, B. Librational response of a deformed 3-layer Titan perturbed by non-Keplerian orbit and atmospheric couplings. Planet. Space Sci. 93, 22–34 (2014).

    Article  ADS  Google Scholar 

  34. Xu, S. & Szeto, A. M. K. Gravitational coupling in the Earth’s interior revisited. Geophys. J. Int. 118, 94–100 (1994).

    Article  ADS  Google Scholar 

  35. Thomas, P. C. et al. Shapes of the Saturnian icy satellites and their significance. Icarus 190, 573–584 (2007).

    Article  CAS  ADS  Google Scholar 

  36. Choblet, G. et al. Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1, 841–847 (2017).

    Article  ADS  Google Scholar 

  37. Castillo-Rogez, J. C., Efroimsky, M. & Lainey, V. The tidal history of Lapetus: spin dynamics in the light of a refined dissipation model. J. Geophys. Res. 116, E09008 (2011).

    ADS  Google Scholar 

  38. Saito, M. Some problems of static deformation of the Earth. J. Phys. Earth 22, 123–140 (1974).

    Article  Google Scholar 

  39. Takeushi, H. & Saito, M. in Methods in Computational Physics Vol. 1 (ed. Bolt, B. A.) 217–295 (Academic Press, 1972).

  40. Grasset, O. & Pargamin, J. The ammonia water system at high pressures: implications for the methane of Titan. Planet. Space Sci. 53, 371–384 (2005).

    Article  CAS  ADS  Google Scholar 

  41. Waite, J. H. et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356, 155–159 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

V.L. and N.R. thank the FP7-ESPaCE European programme for funding under the agreement number 263466. G.T. acknowledges support from the ANR COLOSSe project. Q.Z. is supported by the Joint Research Fund in Astronomy (number U2031104) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences (CAS).

Author information

Authors and Affiliations

Authors

Contributions

V.L. developed and fitted to the observations the full numerical model presented for the astrometric approach. N.R. developed the librational model and provided the solutions as function of interior structure. G.T. developed the thermo-orbital model of Mimas and performed the simulations of past evolution. N.C., V.L. and Q.Z. provided extra astrometric data. B.N. ran the N-body simulations involving a high eccentric Mimas. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to V. Lainey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks David Stevenson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Reprocessing of Mimas astrometry.

Here most of the satellite edge can be used for determining the center of figure of Mimas. The purple dots are the detected edge points on the image, while the turquoise ones represent the expected shape from spherical harmonics computation. The orange curve represents Mimas’s equator. Using 3-D complex shape modelling allows a more accurate center of figure to be obtained for Mimas.

Extended Data Fig. 2 Core radius for solid model.

Solutions for the 3-D geometric axes, polar radius (rp) and equatorial radius at longitude = pi/2 (re2) as function of the equatorial radius at longitude = 0 (re1). Each point represents an interior model where the core and mantle densities vary from [920–1100] kg m−3 and [1200–3600] kg m−3. In all cases, rp or re2 is negative. For this figure, Stoke’s coefficients are C20 = −0.101 and C22 = 0.0093.

Extended Data Fig. 3 Sensitivity of shape parameters.

This figure shows the Mimas’ libration and periapsis drift solutions for a range of equatorial and polar flattenings.

Extended Data Table 1 Estimation of Mimas gravity field

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lainey, V., Rambaux, N., Tobie, G. et al. A recently formed ocean inside Saturn’s moon Mimas. Nature 626, 280–282 (2024). https://doi.org/10.1038/s41586-023-06975-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06975-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing