Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observing dynamical phases of BCS superconductors in a cavity QED simulator

Abstract

In conventional Bardeen–Cooper–Schrieffer superconductors1, electrons with opposite momenta bind into Cooper pairs due to an attractive interaction mediated by phonons in the material. Although superconductivity naturally emerges at thermal equilibrium, it can also emerge out of equilibrium when the system parameters are abruptly changed2,3,4,5,6,7,8. The resulting out-of-equilibrium phases are predicted to occur in real materials and ultracold fermionic atoms, but not all have yet been directly observed. Here we realize an alternative way to generate the proposed dynamical phases using cavity quantum electrodynamics (QED). Our system encodes the presence or absence of a Cooper pair in a long-lived electronic transition in 88Sr atoms coupled to an optical cavity and represents interactions between electrons as photon-mediated interactions through the cavity9,10. To fully explore the phase diagram, we manipulate the ratio between the single-particle dispersion and the interactions after a quench and perform real-time tracking of the subsequent dynamics of the superconducting order parameter using nondestructive measurements. We observe regimes in which the order parameter decays to zero (phase I)3,4, assumes a non-equilibrium steady-state value (phase II)2,3 or exhibits persistent oscillations (phase III)2,3. This opens up exciting prospects for quantum simulation, including the potential to engineer unconventional superconductors and to probe beyond mean-field effects like the spectral form factor11,12, and for increasing the coherence time for quantum sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Engineering BCS dynamical phases.
Fig. 2: Phase I to phase II transition.
Fig. 3: Phase II to phase III transition.
Fig. 4: Scan across three dynamical phases.

Similar content being viewed by others

Data availability

The datasets generated for this study are available in a Dryad repository with the identifier https://doi.org/10.5061/dryad.7h44j100j (ref. 55).

References

  1. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175 (1957).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  2. Yuzbashyan, E. A., Tsyplyatyev, O. & Altshuler, B. L. Relaxation and persistent oscillations of the order parameter in fermionic condensates. Phys. Rev. Lett. 96, 097005 (2006).

    Article  PubMed  ADS  Google Scholar 

  3. Barankov, R. A. & Levitov, L. S. Synchronization in the BCS pairing dynamics as a critical phenomenon. Phys. Rev. Lett. 96, 230403 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Yuzbashyan, E. A. & Dzero, M. Dynamical vanishing of the order parameter in a fermionic condensate. Phys. Rev. Lett. 96, 230404 (2006).

    Article  PubMed  ADS  Google Scholar 

  5. Gurarie, V. & Radzihovsky, L. Resonantly paired fermionic superfluids. Ann. Phys. 322, 2–119 (2007).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  6. Gurarie, V. Nonequilibrium dynamics of weakly and strongly paired superconductors. Phys. Rev. Lett. 103, 075301 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Foster, M. S., Dzero, M., Gurarie, V. & Yuzbashyan, E. A. Quantum quench in a p + ip superfluid: winding numbers and topological states far from equilibrium. Phys. Rev. B 88, 104511 (2013).

    Article  ADS  Google Scholar 

  8. Yuzbashyan, E. A., Dzero, M., Gurarie, V. & Foster, M. S. Quantum quench phase diagrams of an s-wave BCS-BEC condensate. Phys. Rev. A 91, 033628 (2015).

    Article  ADS  Google Scholar 

  9. Lewis-Swan, R. J. et al. Cavity-QED quantum simulator of dynamical phases of a Bardeen–Cooper–Schrieffer superconductor. Phys. Rev. Lett. 126, 173601 (2021).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  10. Kelly, S. P., Thompson, J. K., Rey, A. M. & Marino, J. Resonant light enhances phase coherence in a cavity QED simulator of fermionic superfluidity. Phys. Rev. Res. 4, L042032 (2022).

    Article  CAS  Google Scholar 

  11. Stewart, G. R. Unconventional superconductivity. Adv. Phys. 66, 75–196 (2017).

    Article  ADS  Google Scholar 

  12. Sato, M. & Ando, Y. Topological superconductors: a review. Rep. Prog. Phys. 80, 076501 (2017).

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  13. Zhou, X. et al. High-temperature superconductivity. Nat. Rev. Phys. 3, 462–465 (2021).

    Article  CAS  Google Scholar 

  14. Shuryak, E. Strongly coupled quark-gluon plasma in heavy ion collisions. Rev. Mod. Phys. 89, 035001 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  15. Harlow, D. Jerusalem lectures on black holes and quantum information. Rev. Mod. Phys. 88, 015002 (2016).

    Article  ADS  Google Scholar 

  16. Marino, J., Eckstein, M., Foster, M. & Rey, A.-M. Dynamical phase transitions in the collisionless pre-thermal states of isolated quantum systems: theory and experiments. Rep. Prog. Phys. 85, 116001 (2022).

    Article  MathSciNet  ADS  Google Scholar 

  17. Volkov, A. F. & Kogan, S. M. Collisionless relaxation of the energy gap in superconductors. J. Exp. Theor. Phys. 38, 1018 (1974). [Russian original—Zh. Eksp. Teor. Fiz. 65, 2038 (1973)].

    ADS  Google Scholar 

  18. Yuzbashyan, E. A., Altshuler, B. L., Kuznetsov, V. B. & Enolskii, V. Z. Solution for the dynamics of the BCS and central spin problems. J. Phys.: Math. Gen. 38, 7831 (2005).

  19. Barankov, R. A., Levitov, L. S. & Spivak, B. Z. Collective Rabi oscillations and solitons in a time-dependent BCS pairing problem. Phys. Rev. Lett. 93, 160401 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Yuzbashyan, E. A. Normal and anomalous solitons in the theory of dynamical Cooper pairing. Phys. Rev. B 78, 184507 (2008).

    Article  ADS  Google Scholar 

  21. Foster, M. S., Gurarie, V., Dzero, M. & Yuzbashyan, E. A. Quench-induced Floquet topological p-wave superfluids. Phys. Rev. Lett. 113, 076403 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Collado, H. P. O., Defenu, N. & Lorenzana, J. Engineering Higgs dynamics by spectral singularities. Phys. Rev. Res. 5, 023011 (2023).

    Article  CAS  Google Scholar 

  23. Mansart, B. et al. Coupling of a high-energy excitation to superconducting quasiparticles in a cuprate from coherent charge fluctuation spectroscopy. Proc. Natl Acad. Sci. USA 110, 4539–4544 (2013).

    Article  CAS  PubMed Central  ADS  Google Scholar 

  24. Matsunaga, R. et al. Higgs amplitude mode in the BCS superconductors Nb1−xTixN induced by terahertz pulse excitation. Phys. Rev. Lett. 111, 057002 (2013).

    Article  PubMed  ADS  Google Scholar 

  25. Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  26. Randeria, M. & Taylor, E. BCS-BEC crossover and the unitary Fermi gas. Annu. Rev. Condens. Matter Phys. 5, 209–232 (2014).

    Article  CAS  ADS  Google Scholar 

  27. Behrle, A. et al. Higgs mode in a strongly interacting fermionic superfluid. Nat. Phys. 14, 781–785 (2018).

    Article  CAS  Google Scholar 

  28. Anderson, P. W. Random-phase approximation in the theory of superconductivity. Phys. Rev. 112, 1900 (1958).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  29. Davis, E. J. et al. Protecting spin coherence in a tunable Heisenberg model. Phys. Rev. Lett. 125, 060402 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Norcia, M. A. et al. Cavity-mediated collective spin-exchange interactions in a strontium superradiant laser. Science 361, 259–262 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Allred, J. C., Lyman, R. N., Kornack, T. W. & Romalis, M. V. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett. 89, 130801 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Kleine, A., Kollath, C., McCulloch, I. P., Giamarchi, T. & Schollwoeck, U. Excitations in two-component Bose gases. New J. Phys. 10, 045025 (2008).

    Article  ADS  Google Scholar 

  33. Deutsch, C. et al. Spin self-rephasing and very long coherence times in a trapped atomic ensemble. Phys. Rev. Lett. 105, 020401 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Smale, S. et al. Observation of a transition between dynamical phases in a quantum degenerate Fermi gas. Sci. Adv. 5, eaax1568 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Muniz, J. A. et al. Exploring dynamical phase transitions with cold atoms in an optical cavity. Nature 580, 602–607 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Baghdad, M. et al. Spectral engineering of cavity-protected polaritons in an atomic ensemble. Nat. Phys. 19, 1104–1109 (2023).

    Article  CAS  Google Scholar 

  37. Sauerwein, N. et al. Engineering random spin models with atoms in a high-finesse cavity. Nat. Phys. 19, 1128–1134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Richardson, R. & Sherman, N. Exact eigenstates of the pairing-force Hamiltonian. Nucl. Phys. 52, 221–238 (1964).

    Article  MathSciNet  Google Scholar 

  39. Gaudin, M. Diagonalization of a class of spin Hamiltonians. J. Phys. 37, 1087–1098 (1976).

    Article  Google Scholar 

  40. Weiner, J. M., Cox, K. C., Bohnet, J. G., Chen, Z. & Thompson, J. K. Superradiant Raman laser magnetometer. Appl. Phys. Lett. 101, 261107 (2012).

    Article  ADS  Google Scholar 

  41. Bohnet, J. G., Chen, Z., Weiner, J. M., Cox, K. C. & Thompson, J. K. Active and passive sensing of collective atomic coherence in a superradiant laser. Phys. Rev. A 88, 013826 (2013).

    Article  ADS  Google Scholar 

  42. Norcia, M. A., Winchester, M. N., Cline, J. R. & Thompson, J. K. Superradiance on the millihertz linewidth strontium clock transition. Sci. Adv. 2, e1601231 (2016).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  43. Rey, A. M., Jiang, L., Fleischhauer, M., Demler, E. & Lukin, M. D. Many-body protected entanglement generation in interacting spin systems. Phys. Rev. A 77, 052305 (2008).

    Article  ADS  Google Scholar 

  44. Black-Schaffer, A. M. Edge properties and Majorana fermions in the proposed chiral d-wave superconducting state of doped graphene. Phys. Rev. Lett. 109, 197001 (2012).

    Article  PubMed  ADS  Google Scholar 

  45. Nandkishore, R., Levitov, L. S. & Chubukov, A. V. Chiral superconductivity from repulsive interactions in doped graphene. Nat. Phys. 8, 158–163 (2012).

    Article  CAS  Google Scholar 

  46. Kiesel, M. L., Platt, C., Hanke, W., Abanin, D. A. & Thomale, R. Competing many-body instabilities and unconventional superconductivity in graphene. Phys. Rev. B 86, 020507 (2012).

    Article  ADS  Google Scholar 

  47. Kiesel, M. L., Platt, C., Hanke, W. & Thomale, R. Model evidence of an anisotropic chiral d + id-wave pairing state for the water-intercalated NaxCoO2yH2O superconductor. Phys. Rev. Lett. 111, 097001 (2013).

    Article  PubMed  ADS  Google Scholar 

  48. Fischer, M. H. et al. Chiral d-wave superconductivity in SrPtAs. Phys. Rev. B 89, 020509 (2014).

    Article  ADS  Google Scholar 

  49. Shankar, A. et al. Simulating dynamical phases of chiral p + ip superconductors with a trapped ion magnet. PRX Quantum 3, 040324 (2022).

    Article  ADS  Google Scholar 

  50. Laughlin, R. Magnetic induction of \({d}_{{x}^{2}-{y}^{2}}+i{d}_{xy}\) order in high-Tc superconductors. Phys. Rev. Lett. 80, 5188 (1998).

  51. Balatsky, A. V., Vekhter, I. & Zhu, J.-X. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373 (2006).

    Article  CAS  ADS  Google Scholar 

  52. Schäfer, T. & Teaney, D. Nearly perfect fluidity: from cold atomic gases to hot quark gluon plasmas. Rep. Prog. Phys. 72, 126001 (2009).

    Article  ADS  Google Scholar 

  53. Pehlivan, Y., Balantekin, A., Kajino, T. & Yoshida, T. Invariants of collective neutrino oscillations. Phys. Rev. D 84, 065008 (2011).

    Article  ADS  Google Scholar 

  54. Norcia, M. A. et al. Frequency measurements of superradiance from the strontium clock transition. Phys. Rev. X 8, 021036 (2018).

    CAS  Google Scholar 

  55. Young, D. J. et al. Data for: observing dynamical phases of BCS superconductors in a cavity QED simulator. Dryad https://doi.org/10.5061/dryad.7h44j100j (2023).

Download references

Acknowledgements

This material is based upon work supported by the US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Systems Accelerator. We acknowledge additional funding support from the National Science Foundation under Grant Nos. 2317149 (Physics Frontier Center) and OMA-2016244 (Quantum Leap Challenge Institutes), the National Institute of Standards and Technology, the Army Research Office of the Defense Advanced Research Projects Agency (Grant Nos. W911NF-19-1-0210 and W911NF-16-1-0576) and the Air Force Office of Scientific Research (Grant Nos. FA9550-18-1-0319 and FA9550-19-1-0275). We acknowledge helpful discussions with E. Yuzbashyan, V. Gurarie and A. Kaufman.

Author information

Authors and Affiliations

Authors

Contributions

D.J.Y., E.Y.S., Z.N., V.M.S. and J.K.T. collected and analysed the experimental data. A.C., D.B., D.W., R.J.L.-S. and A.M.R. developed the theoretical model. All authors discussed the results and contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Ana Maria Rey or James K. Thompson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks José Lorenzana, Emil Yuzbashyan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Experimental configuration.

a, Detailed diagram of the cavity and all relevant beams. A magnetic field along \(\widehat{y}\) sets the quantization axis. The 813 nm optical lattice supported by the cavity has a tunable linear polarization. We drive a π/2 pulse with a beam polarized along \(\widehat{y}\) through the cavity, and during the experiment we probe the cavity resonance frequency using a second \(\widehat{y}\)-polarized beam to measure atom number. A 461 nm beam far-detuned from the \({|}^{1}{S}_{0}\rangle \to {|}^{1}{P}_{1}\rangle \) transition shines on the atoms from the side of the cavity, inducing a.c. Stark shifts. We probe signals transmitted through the cavity using a balanced heterodyne detector. b, Fluorescence image of the two atomic clouds used when scanning through phase III in Figs. 3 and 4. c, Frequency landscape of 689 nm beams. The atomic drive frequency ωdrive is resonant with the atomic transition. The cavity probe frequency ωcp is nominally centred with the cavity resonance frequency, 51 MHz red-detuned from the atomic transition. The local oscillator used in heterodyne detection has frequency ωLO and is 80 MHz blue-detuned from the atomic transition.

Extended Data Fig. 2 Numerical simulation of the dynamical phase diagram based on equation (3).

We identify the dynamical phases based on the long-time average (a) and the long-time standard deviation (b) of ΔBCS(t), normalized by its initial value Δinit ≡ ΔBCS(0). The white solid lines mark the corresponding dynamical phase boundaries, analytically derived from equation (1), which agree with the numerical results based on equation (3). The white dashed lines mark an extra dynamical phase transition that only exists for equation (1).

Extended Data Fig. 3 Alternative approach for phase III.

a, Simulation of an alternative experimental sequence. As described by the timing sequence at the top, we simulate an experiment that prepares the initial state using a π/2 pulse, lets the system evolve under a bimodal distribution of single-particle energy (see the inset) until ΔBCS reaches its minimum value and then quenches the system back to a continuous distribution of single-particle energies (inset). The theoretically predicted time trace of ΔBCS with χN/EW = 1.0 and δs,init/EW = 1.6 is shown at the bottom. The blue (grey dashed) line shows phase III dynamics under a continuous (bimodal) distribution. b, Long-time standard deviation of ΔBCS(t) after quenching to the continuous distribution shown in a. The white lines are dynamical phase boundaries for bimodal distributions (see Extended Data Fig. 2). Nearly all choices of parameters for phase III using bimodal distributions can lead to phase III behaviour after quenching to the continuous distribution.

Extended Data Fig. 4 Collective scaling in damped phase II oscillations.

a, Time dynamics of ΔBCS measured after engineering an initial phase spread over [0, φ0] where φ0 = 0.8π as in Fig. 2d, plotted in absolute frequency units (pink trace). The solid black curve represents a numerical simulation of the full system, whereas the dashed curve represents an ideal simulation neglecting dissipation and motional effects. We obtain a crude estimate of oscillation frequency in the experimental data by fitting a trough and peak to smoothed data (after subtracting slow-moving behaviour) within the first couple μs (magenta points), using these points to infer a half period of oscillation, and with uncertainties determined using a 90% amplitude threshold (pink bands). b, Comparing oscillation frequency estimates of experimental data (pink squares) with those of ideal simulations (black dots) for different φ0. Theory oscillation frequencies are calculated using a Fourier transform from t = 0 μs to t = 5 μs. Error bars for experimental data are set by the minimum and maximum frequencies implied by uncertainties in the half period shown in a. The two frequency estimates agree within error bars. c, Collective scaling of oscillation frequency. For each φ0 measured in the experiment, we plot the oscillation frequency against the long-time BCS gap Δ, calculated at t = 18 μs for ideal simulations and at t = 3 μs for experimental data. The solid black line is defined by ωosc = 2Δ, demonstrating the expected scaling for Higgs oscillations. The dashed pink line represents a linear fit to the experimental data. The pink band shows the uncertainty in the slope assuming correlated error in ωosc, such that its bounds are defined by linear fits to the data assuming maximum and minimum values for ωosc as defined by the error bars.

Supplementary information

Supplementary Information

Supplementary Information sections 1–3, including Figs. 1–5 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, D.J., Chu, A., Song, E.Y. et al. Observing dynamical phases of BCS superconductors in a cavity QED simulator. Nature 625, 679–684 (2024). https://doi.org/10.1038/s41586-023-06911-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06911-x

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing