Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Negative mixing enthalpy solid solutions deliver high strength and ductility

Abstract

Body-centred cubic refractory multi-principal element alloys (MPEAs), with several refractory metal elements as constituents and featuring a yield strength greater than one gigapascal, are promising materials to meet the demands of aggressive structural applications1,2,3,4,5,6. Their low-to-no tensile ductility at room temperature, however, limits their processability and scaled-up application7,8,9,10. Here we present a HfNbTiVAl10 alloy that shows remarkable tensile ductility (roughly 20%) and ultrahigh yield strength (roughly 1,390 megapascals). Notably, these are among the best synergies compared with other related alloys. Such superb synergies derive from the addition of aluminium to the HfNbTiV alloy, resulting in a negative mixing enthalpy solid solution, which promotes strength and favours the formation of hierarchical chemical fluctuations (HCFs). The HCFs span many length scales, ranging from submicrometre to atomic scale, and create a high density of diffusive boundaries that act as effective barriers for dislocation motion. Consequently, versatile dislocation configurations are sequentially stimulated, enabling the alloy to accommodate plastic deformation while fostering substantial interactions that give rise to two unusual strain-hardening rate upturns. Thus, plastic instability is significantly delayed, which expands the plastic regime as ultralarge tensile ductility. This study provides valuable insights into achieving a synergistic combination of ultrahigh strength and large tensile ductility in MPEAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tensile properties of the HNTVA10 alloy and comparison with other high-performance bcc refractory MPEAs.
Fig. 2: Hierarchical heterostructure featuring multilevel CFs in the HNTVA10 alloy.
Fig. 3: Normalized strain-hardening rate and dislocation density on tension.
Fig. 4: Deformation mechanism of the HNTVA10 alloy.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.

References

  1. Lei, Z. F. et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563, 546–550 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).

    Article  CAS  ADS  Google Scholar 

  3. Wang, L. et al. Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys. Nat. Mater. 22, 950–957 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Wei, S. L. et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nat. Mater. 19, 1175–1181 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Feng, R. et al. Superior High-temperature strength in a supersaturated refractory high-entropy alloy. Adv. Mater. 33, 2102401 (2021).

    Article  CAS  Google Scholar 

  6. Senkov, O. N. et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd 509, 6043–6048 (2011).

    Article  CAS  Google Scholar 

  7. Ma, E. & Wu, X. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy. Nat. Commun. 10, 5623 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Senkov, O. N. & Semiatin, S. L. Microstructure and properties of a refractory high-entropy alloy after cold working. J. Alloys Compd 649, 1110–1123 (2015).

    Article  CAS  Google Scholar 

  9. Wang, S.-P., Ma, E. & Xu, J. New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: Hafnium versus titanium into NbTa-based solution. Intermetallics 107, 15–23 (2019).

    Article  CAS  Google Scholar 

  10. Senkov, O. N., Wilks, G. B., Scott, J. M. & Miracle, D. B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698–706 (2011).

    Article  CAS  Google Scholar 

  11. George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    Article  CAS  ADS  Google Scholar 

  12. George, E. P. & Ritchie, R. O. High-entropy materials. MRS Bull. 47, 145–150 (2022).

    Article  ADS  Google Scholar 

  13. Li, Z. M., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227–230 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  14. An, Z. B. et al. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion. J. Mater. Sci. Tech. 79, 109–117 (2021).

    Article  CAS  Google Scholar 

  15. Ma, E. & Zhu, T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 20, 323–331 (2017).

    Article  CAS  Google Scholar 

  16. Lilensten, L. et al. Study of a bcc multi-principal element alloy: tensile and simple shear properties and underlying deformation mechanisms. Acta Mater. 142, 131–141 (2018).

    Article  CAS  ADS  Google Scholar 

  17. Basinski, Z. S., Szczerba, M. S. & Embury, J. D. Tensile instability in face-centred cubic materials. Philos. Mag. A 76, 743–752 (1997).

    Article  CAS  ADS  Google Scholar 

  18. Huang, H. L. et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 29, 1701678 (2017).

    Article  ADS  Google Scholar 

  19. Su, I.-A. et al. Strengthening mechanisms and microstructural evolution of ductile refractory medium-entropy alloy Hf20Nb10Ti35Zr35. Scr. Mater. 206, 114225 (2022).

    Article  CAS  Google Scholar 

  20. Zhang, X. B. et al. Deformation twinning in Ti48.9Zr32.0Nb12.6Ta6.5 medium entropy alloy. Mater. Sci. Eng. A 809, 140931 (2021).

    Article  CAS  Google Scholar 

  21. Bu, Y. Q. et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys. Mater. Today 46, 28–34 (2021).

    Article  CAS  Google Scholar 

  22. An, Z. B. et al. Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy. Mater. Horiz. 8, 948–955 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Mills, L. H. et al. Temperature-dependent tensile behavior of the HfNbTaTiZr multi-principal element alloy. Acta Mater. 245, 118618 (2023).

    Article  CAS  Google Scholar 

  24. Li, T. X. et al. CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy. Acta Mater. 246, 118728 (2023).

    Article  CAS  Google Scholar 

  25. Chen, Y. J. et al. Achieving high strength and ductility in high-entropy alloys via spinodal decomposition-induced compositional heterogeneity. J. Mater. Sci. Tech. 141, 149–154 (2023).

    Article  CAS  Google Scholar 

  26. Cui, D. C. et al. Oxygen-assisted spinodal structure achieves 1.5 GPa yield strength in a ductile refractory high-entropy alloy. J. Mater. Sci. Tech. 157, 11–20 (2023).

    Article  CAS  Google Scholar 

  27. Williams, D. B. & Carterm, C. B. Transmission Electron Microscopy: A Textbook for Materials Science (Springer, 2009).

  28. Zhang, B. et al. Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material. Appl. Phys. Lett. 108, 191902 (2016).

    Article  ADS  Google Scholar 

  29. Yang, T. et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 362, 933–937 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Wu, X. L. Chemical short-range orders in high-/medium-entropy alloys. J. Mater. Sci. Tech. 147, 189–196 (2023).

    Article  Google Scholar 

  31. Dini, G., Ueji, R., Najafizadeh, A. & Monir-Vaghefi, S. M. Flow stress analysis of TWIP steel via the XRD measurement of dislocation density. Mater. Sci. Eng. A 527, 2759–2763 (2010).

    Article  Google Scholar 

  32. Smallman, R. E. & Westmacott, K. H. Stacking faults in face-centred cubic metals and alloys. Philos. Mag. 2, 669–683 (1957).

    Article  CAS  ADS  Google Scholar 

  33. Eleti, R. R. et al. Plastic deformation of solid-solution strengthened Hf-Nb-Ta-Ti-Zr body-centered cubic medium/high-entropy alloys. Scri. Mater. 200, 113927 (2021).

    Article  CAS  Google Scholar 

  34. Xian, X. et al. A high-entropy V35Ti35Fe15Cr10Zr5 alloy with excellent high-temperature strength. Mater. Design 121, 229–236 (2017).

    Article  CAS  Google Scholar 

  35. Li, H. et al. Uniting tensile ductility with ultrahigh strength via composition undulation. Nature 604, 273–279 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Li, Z. et al. Dynamic mechanisms of strengthening and softening of coherent twin boundary via dislocation pile-up and cross-slip. Mater. Res. Lett. 10, 539–546 (2022).

    Article  CAS  Google Scholar 

  37. Wang, L. et al. Lightweight Zr1.2V0.8NbTixAly high-entropy alloys with high tensile strength and ductility. Mater. Sci. Eng. A 814, 141234 (2021).

    Article  CAS  Google Scholar 

  38. Yurchenko, N. et al. Overcoming the strength-ductility trade-off in refractory medium-entropy alloys via controlled B2 ordering. Mater. Res. Lett. 10, 813–823 (2022).

    Article  CAS  Google Scholar 

  39. Wu, Y. D. et al. Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys. Mater. Sci. Eng. A 724, 249–259 (2018).

    Article  CAS  Google Scholar 

  40. Zeng, S. et al. Microstructure and mechanical properties of lightweight Ti3Zr1.5NbVAlx (x = 0, 0.25, 0.5 and 0.75) refractory complex concentrated alloys. J. Mater. Sci. Tech. 130, 64–74 (2022).

    Article  CAS  Google Scholar 

  41. Yurchenko, N. et al. Effect of B2 ordering on the tensile mechanical properties of refractory AlxNb40Ti40V20−x medium-entropy alloys. J. Alloys Compd. 937, 168465 (2023).

    Article  CAS  Google Scholar 

  42. Ding, Q. Q. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574, 223–227 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Ma, E. Unusual dislocation behavior in high-entropy alloys. Scri. Mater. 181, 127–133 (2020).

    Article  CAS  Google Scholar 

  44. Chen, X. F. et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature 592, 712–716 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Xun, K. H. et al. Local chemical inhomogeneities in TiZrNb-based refractory high-entropy alloys. J. Mater. Sci. Tech. 135, 221–230 (2023).

    Article  CAS  Google Scholar 

  46. Bi, L. X. et al. Weak enthalpy-interaction-element-modulated NbMoTaW high-entropy alloy thin films. Appl. Surf. Sci. 565, 150462 (2021).

    Article  CAS  Google Scholar 

  47. Williamson, G. K. & Smallman, R. E. III Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye–Scherrer spectrum. Philos. Mag. 1, 34–46 (1956).

    Article  CAS  ADS  Google Scholar 

  48. Xu, N. et al. Micromechanical behaviors of Fe20Co30Cr25Ni25 high entropy alloys with partially and completely recrystallized microstructures investigated by in-situ high-energy X-ray diffraction. Metall. Mater. Trans. A 52, 3674–3683 (2021).

    Article  CAS  Google Scholar 

  49. Rosenauer, A. et al. Measurement of specimen thickness and composition in Al(x)Ga(1−x)N/GaN using high-angle annular dark field images. Ultramicroscopy 109, 1171–1182 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Lebeau, J. M. & Stemmer, S. Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 108, 1653–1658 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. LeBeau, J. M., Findlay, S. D., Allen, L. J. & Stemmer, S. Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett. 100, 206101 (2008).

    Article  PubMed  ADS  Google Scholar 

  52. Van Aert, S. et al. Procedure to count atoms with trustworthy single-atom sensitivity. Phys. Rev. B 87, 064107 (2013).

    Article  ADS  Google Scholar 

  53. Zhang, Y. et al. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534–538 (2008).

    Article  CAS  Google Scholar 

  54. Senkov, O. N., Senkova, S. V. & Woodward, C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214–228 (2014).

    Article  CAS  ADS  Google Scholar 

  55. Cantor, B. Multicomponent high-entropy Cantor alloys. Prog. Mater Sci. 120, 100754 (2021).

  56. Takeuchi, A. & Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817–2829 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China (grant no. 2021YFA1200201), Beijing Outstanding Young Scientists Projects (grant no. BJJWZYJH01201910005018), Basic Science Center Program for Multiphase Evolution in Hypergravity of the National Natural Science Foundation of China (grant no. 51988101) and the Natural Science Foundation of China (grant nos. 52071003, 91860202). The methodology of high-energy synchrotron X-ray scattering was supported by the National Key Basic Research Program of China (grant no. 2020YFA0406101), Beijing Nova Program (grant no. Z211100002121170), Beijing Municipal Education Commission Project (grant no. PXM2020_014204_000021), China Postdoctoral Science Foundation (grant no. 2022M720311), ‘111’ project (grant no. DB18015) and the Hong Kong Research Grant Council with CityU grant no. 21205621. We also thank Y. Du and F. Liu for discussions on spinodal decomposition and the phase diagram.

Author information

Authors and Affiliations

Authors

Contributions

X.H., S.M. and Z.A. designed the study. Z.A., T.Y., B.C., L.Z., R.W., Z.W., B.Z., R.S., J. Zhang, C.S., Y.R., C.L., X.W., L.S., A.L. and J. Zhao carried out the main experiments under the supervision of X.H., S.M. and Y.R. The data were analysed by Z.A., S.M., X.H., Z.Z., Y.C., Z.L., F.R., H.L., W.L., Z.W., L.Y., F.H., C.-T.L. and X.Z. All authors contributed to the discussion of the results and commented on the manuscript. The draft was written by Z.A., S.M. and X.H. X.H. finalized the paper.

Corresponding authors

Correspondence to Shengcheng Mao or Xiaodong Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Sheng Guo, Eun Soo Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Mechanical properties of the annealed HNTVAx (x = 0, 5, 10, 15) alloys.

a, True stress–true strain curves of the four alloys. b, Yield strength against mixing enthalpy of the four alloys. c, Ductility (true strain) against mixing enthalpy of the four alloys.

Extended Data Fig. 2 L-CF structure in the annealed HNTVA10 alloy.

a, STEM-HAADF images of annealed HNTVA10 samples cut from three orthogonal directions. b, Three-dimensional (3D) constructed STEM-HAADF image. c, STEM-HAADF images of L-CFs taken at different tilt angles. d, A 3D constructed image showing the interlocking structure of L-CFs.

Extended Data Fig. 3 Microstructure of the HNTVAx (x = 0, 5, 10, 15) alloys.

(a-d), SEM secondary electron images of cast HNTVA0, HNTVA5, HNTVA10, and HNTVA15 alloys, showing dendrite structure. (e-f), STEM-HAADF image of the cast HNTVA0, HNTVA5, and HNTVA10 alloys, showing L-CFs heterogeneous solid solution structure. The inset shows the corresponding SAED pattern. h, TEM image of the cast HNTVA15 alloy, showing B2 structure. The inset shows the corresponding SAED pattern. (i-l), SEM secondary electron images of the homogenized HNTVA0, HNTVA5, HNTVA10, and HNTVA15 alloys. (m-o), EBSD-IPF images of the HNTVA0, HNTVA5, and HNTVA10 alloys after cold-rolling and annealing at 1200 °C for 5 min. p, EBSD-IPF image of the HNTVA15 alloy after annealing at 1200 °C for 5 min. (q-s), HAADF-STEM images of the HNTVA0, HNTVA5, and HNTVA10 alloys after cold-rolling and annealing at 1200 °C for 5 min, showing L-CF heterogeneous microstructure. t, TEM image of the annealed HNTVA15 alloy, showing B2 structure.

Extended Data Fig. 4 Microstructure of the annealed HNTVAx (x = 5, 10, 15) alloys.

a, XRD patterns showing the phase of the annealed HNTVA5, HNTVA10, and HNTVA15 alloys. All three alloys exhibit a BCC structure. b, Zoomed-in view of the (310) peak of the HNTVA10 alloy reveals that it is an overlap of two peaks, indicating the presence of two BCC variants in this alloy.

Extended Data Fig. 5 Mixing entropy and enthalpy distribution of the annealed HNTVA10 alloy at atomic resolution.

a, Mixing entropy distribution corresponding to Fig. 2g. b, Line scan profiles of the mixing entropy distribution along the white region in a. c, Mixing enthalpy distribution corresponding to Fig. 2g. d, Line scan profiles of the mixing enthalpy distribution along the white region in c.

Extended Data Fig. 6 STEM-HAADF images show dislocation pinning in the annealed HNTVA10 alloy.

a, Low-magnification STEM-HAADF image showing dislocation pinning (red arrow). b-c, Continuously magnified STEM-HAADF images showing the dislocation pinning structure down to the atomic scale. d, Integrated intensity of each atomic column in the pink box of c, showing the existence of M-CFs (black dashed cycles represent the light atoms and solid cycles represent the heavy atoms) around the dislocation pinning structure.

Extended Data Fig. 7 Atomic-resolution STEM-HAADF image and the corresponding energy-dispersive Xray spectroscopy (EDS) maps for individual elements of Hf, Nb, Ti, V, and Al in the annealed HNTVA10 alloy, taken with \([11\bar{1}]\) zone axis.

The yellow symbol “” marks out the dislocation, white circle lines marked out the M-CFs by V-enriched column.

Extended Data Fig. 8 TEM and STEM-HAADF images show the dislocation configuration of the annealed HNTVA10 alloy at a tensile strain of 5%.

a, TEM image showing the dislocation dipole walls, which indicate dislocation cross-slip. b, TEM image showing the dislocation cross-slip from the primary slip band (yellow dashed line). The red arrows show the tangled dislocations and the interaction structure, indicating dislocation pinning and sluggish motion. c, Atomic-resolution STEM-HAADF image showing edge dislocations, indicating a substantial increase in dislocations at heterointerfaces.

Extended Data Fig. 9 Mechanical behavior and microstructural analysis of the annealed HNTVA10 alloy during in situ tensile testing through SEM at room temperature.

a, Scanning electron microscopy, sample dimensions and the Gatan microtension tester used in the tension tests. b, Stress–strain curves of the HNTVA10 sample. The inset SEM image shows the sample micrographs before and after the tensile test. c-e, SEM images of the slip traces on the sample surfaces of the different interrupted strains. The schematic below illustrates the slip traces, slip system and Schmid factor. Regarding the dislocation substructure during tensile testing, dipolar walls that mainly contain a high density of primary dislocation dipoles are observed, suggesting a typical cross-slip to form a wavy slip line (red arrow). With increasing strain, an additional slip system is activated, resulting in the formation of highly dense straight slip line (pink arrow) in different directions.

Extended Data Fig. 10 Relationship between enhanced yield strength and Al content and mixing enthalpy.

a, Effect of Al content on the yield strength. b, Effect of mixing enthalpy on the yield strength, showing the increment of yield strength as the negative mixing enthalpy becomes more negative, and exhibiting a quasi-linear trend, such as, Zr1.2V0.8NbTi3.6Alx (~27 MPa/(kJ/mol))37, (NbTiZr)100−xAlx (~27 MPa/(kJ/mol))38, (TiZrHfNb)100−xAlx (~28 MPa/(kJ/mol))39, and Ti3Zr1.5NbVAlx (~28 MPa/(kJ/mol))40. However, some scattered data points are also observed, for instance, (NbTiV)100−xAlx (~10 MPa/(kJ/mol))41.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20, Tables 1–3, Notes 1–4 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Z., Li, A., Mao, S. et al. Negative mixing enthalpy solid solutions deliver high strength and ductility. Nature 625, 697–702 (2024). https://doi.org/10.1038/s41586-023-06894-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06894-9

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing