Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phages overcome bacterial immunity via diverse anti-defence proteins

Abstract

It was recently shown that bacteria use, apart from CRISPR–Cas and restriction systems, a considerable diversity of phage resistance systems1,2,3,4, but it is largely unknown how phages cope with this multilayered bacterial immunity. Here we analysed groups of closely related Bacillus phages that showed differential sensitivity to bacterial defence systems, and discovered four distinct families of anti-defence proteins that inhibit the Gabija, Thoeris and Hachiman systems. We show that these proteins Gad1, Gad2, Tad2 and Had1 efficiently cancel the defensive activity when co-expressed with the respective defence system or introduced into phage genomes. Homologues of these anti-defence proteins are found in hundreds of phages that infect taxonomically diverse bacterial species. We show that the anti-Gabija protein Gad1 blocks the ability of the Gabija defence complex to cleave phage-derived DNA. Our data further reveal that the anti-Thoeris protein Tad2 is a ‘sponge’ that sequesters the immune signalling molecules produced by Thoeris TIR-domain proteins in response to phage infection. Our results demonstrate that phages encode an arsenal of anti-defence proteins that can disable a variety of bacterial defence mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of anti-defence genes based on differential sensitivity to defence systems.
Fig. 2: The Gad1 and Gad2 proteins inhibit Gabija defence.
Fig. 3: Tad2 proteins inhibit Thoeris defence.
Fig. 4: Tad2 cancels Thoeris-mediated defence by sequestering 1″–3′ gcADPR.
Fig. 5: Had1 proteins inhibit Hachiman defence.

Similar content being viewed by others

Data availability

Data that support the findings of this study are available in the article and Supplementary Tables 1–15. IMG and MGV accession numbers, protein sequences and nucleotide sequences are available in Supplementary Tables 814. Coordinates and structure factors for cbTad1–1″–3′-gcADPR, SPO1 Tad2 apo, SPO1 Tad2–1″–3′-gcADPR, SPO1 Tad2–1″–2′-gcADPR and Had1 have been deposited in the Protein Data Bank under the accession codes 8SMD, 8SME, 8SMF, 8SMG and 8TTO, respectively. The genome sequences of the phages SPO1L1–SPO1L5 and SPβL1–SPβL8 have been deposited with GenBank under accession codes OQ921336OQ921348, respectively. Source data are provided with this paper.

References

  1. Dy, R. L., Richter, C., Salmond, G. P. C. & Fineran, P. C. Remarkable mechanisms in microbes to resist phage infections. Annu. Rev. Virol. 1, 307–331 (2014).

    Article  PubMed  Google Scholar 

  2. Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Tal, N. & Sorek, R. SnapShot: bacterial immunity. Cell 185, 578 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Samson, J. E., Magadán, A. H., Sabri, M. & Moineau, S. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11, 675–687 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Atanasiu, C., Su, T.‐J., Sturrock, S. S. & Dryden, D. T. F. Interaction of the ocr gene 0.3 protein of bacteriophage T7 with EcoKI restriction/modification enzyme. Nucleic Acids Res. 30, 3936–3944 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walkinshaw, M. et al. Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol. Cell 9, 187–194 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Drozdz, M., Piekarowicz, A., Bujnicki, J. M. & Radlinska, M. Novel non-specific DNA adenine methyltransferases. Nucleic Acids Res. 40, 2119–2130 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Thavalingam, A. et al. Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2. Nat. Commun. 10, 2806 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Lu, W.-T., Trost, C. N., Müller-Esparza, H., Randau, L. & Davidson, A. R. Anti-CRISPR AcrIF9 functions by inducing the CRISPR–Cas complex to bind DNA non-specifically. Nucleic Acids Res. 49, 3381–3393 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bondy-Denomy, J. et al. Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins. Nature 526, 136–139 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stanley, S. Y. & Maxwell, K. L. Phage-encoded anti-CRISPR defenses. Annu. Rev. Genet. 52, 445–464 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Li, Y. & Bondy-Denomy, J. Anti-CRISPRs go viral: the infection biology of CRISPR-Cas inhibitors. Cell Host Microbe 29, 704–714 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jia, N. & Patel, D. J. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nat. Rev. Mol. Cell Biol. 22, 563–579 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Davidson, A. R. et al. Anti-CRISPRs: protein inhibitors of CRISPR-Cas systems. Annu. Rev. Biochem. 89, 309–332 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Otsuka, Y. & Yonesaki, T. Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Mol. Microbiol. 83, 669–681 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Blower, T. R., Evans, T. J., Przybilski, R., Fineran, P. C. & Salmond, G. P. C. Viral evasion of a bacterial suicide system by RNA–based molecular mimicry enables infectious altruism. PLoS Genet. 8, e1003023 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Gao, L. et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cohen, D. et al. Cyclic GMP–AMP signalling protects bacteria against viral infection. Nature 574, 691–695 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Millman, A. et al. Bacterial retrons function in anti-phage defense. Cell 183, 1551–1561 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Bernheim, A. et al. Prokaryotic viperins produce diverse antiviral molecules. Nature 589, 120–124 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Millman, A. et al. An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 30, 1556–1569 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Whiteley, A. T. et al. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 567, 194–199 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lau, R. K. et al. Structure and mechanism of a cyclic trinucleotide-activated bacterial endonuclease mediating bacteriophage immunity. Mol. Cell 77, 723–733 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Millman, A., Melamed, S., Amitai, G. & Sorek, R. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat. Microbiol. 5, 1608–1615 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ofir, G. et al. Antiviral activity of bacterial TIR domains via immune signalling molecules. Nature 600, 116–120 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Tal, N. et al. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell 184, 5728–5739 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kronheim, S. et al. A chemical defence against phage infection. Nature 564, 283–286 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Bobonis, J. et al. Bacterial retrons encode phage-defending tripartite toxin–antitoxin systems. Nature 609, 144–150 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Huiting, E. et al. Bacteriophages inhibit and evade cGAS-like immune function in bacteria. Cell 186, 864–876 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Hobbs, S. J. et al. Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity. Nature 605, 522–526 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leavitt, A. et al. Viruses inhibit TIR gcADPR signalling to overcome bacterial defence. Nature 611, 326–331 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Rosenthal, R., Toye, P. A., Korman, R. Z. & Zahler, S. A. The prophage of SP beta c2dcitK1, a defective specialized transducing phage of Bacillus subtilis. Genetics 92, 721–739 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tucker, R. G. Acquisition of thymidylate synthetase activity by a thymine-requiring mutant of Bacillus subtilis following Infection by the temperate phage φ3. J. Gen. Virol. 4, 489–504 (1969).

    Article  CAS  PubMed  Google Scholar 

  36. Noyer-Weidner, M., Jentsch, S., Pawlek, B., Günthert, U. & Trautner, T. A. Restriction and modification in Bacillus subtilis: DNA methylation potential of the related bacteriophages Z, SPR, SP beta, phi 3 T, and rho 11. J. Virol. 46, 446–453 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stewart, C. R. et al. The genome of Bacillus subtilis bacteriophage SPO1. J. Mol. Biol. 388, 48–70 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tesson, F. et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat. Commun. 13, 2561 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng, R. et al. A nucleotide-sensing endonuclease from the Gabija bacterial defense system. Nucleic Acids Res. 49, 5216–5229 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stokar-Avihail, A. et al. Discovery of phage determinants that confer sensitivity to bacterial immune systems. Cell 186, 1863–1876 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Antine, S. P. et al. Structural basis of Gabija anti-phage defense and viral immune evasion. Nature https://doi.org/10.1038/s41586-023-06855-2 (2023).

  42. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peters, J. M. et al. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165, 1493–1506 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Nayfach, S. et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 6, 960–970 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Athukoralage, J. S. et al. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature 577, 572–575 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bondy-Denomy, J., Pawluk, A., Maxwell, K. L. & Davidson, A. R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493, 429–432 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Uribe, R. V. et al. Discovery and characterization of Cas9 inhibitors disseminated across seven bacterial phyla. Cell Host Microbe 25, 233–241 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Manik, M. K. et al. Cyclic ADP ribose isomers: production, chemical structures, and immune signaling. Science 377, eadc8969 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. MacLean, R. C. & San Millan, A. The evolution of antibiotic resistance. Science 365, 1082–1083 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Kortright, K. E., Chan, B. K., Koff, J. L. & Turner, P. E. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25, 219–232 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Nobrega, F. L., Costa, A. R., Kluskens, L. D. & Azeredo, J. Revisiting phage therapy: new applications for old resources. Trends Microbiol. 23, 185–191 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Federici, S. et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 185, 2879–2898 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Hussain, F. A. et al. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 374, 488–492 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. LeGault, K. N. et al. Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts. Science 373, eabg2166 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gilchrist, C. L. M. & Chooi, Y.-H. clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 37, 2473–2475 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E. & Johnson, R. P. in Bacteriophages: Methods and Protocols Vol. 1 (eds Kropinski, A. M. & Cloike, M. R. J.) 69–76 (Humana, 2009).

  58. Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2011).

  59. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).

    Article  Google Scholar 

  60. Nurk, S. et al. Assembling genomes and mini-metagenomes from highly chimeric reads. Res. Comput. Mol. Biol. 7821, 158–170 (2013).

  61. Procedure & Checklist – Preparing Multiplexed Microbial Libraries Using SMRTbell Express Template Prep Kit 2.0 (PacBio), version 8 https://www.pacb.com/wp-content/uploads/Procedure-Checklist-–-Preparing-Multiplexed-Microbial-Libraries-Using-SMRTbell-Express-Template-Prep-Kit-2.0.pdf (2021).

  62. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).

    Article  Google Scholar 

  63. Mazzocco, A., Waddell, T. E., Lingohr, E. & Johnson, R. P. in Bacteriophages: Methods and Protocols Vol. 1 (eds Kropinski, A. M. & Cloike, M. R. J.) 81–85 (Humana, 2009).

  64. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Deatherage, D. E. & Barrick, J. E. in Engineering and Analyzing Multicellular Systems (eds Sun, L. & Shou, W.) 165–188 (Humana, 2014).

  66. Adler, B. A. et al. Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing. Nat. Microbiol. 7, 1967–1979 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou, W. et al. Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance. Cell 174, 300–311 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D 69, 1204–1214 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  ADS  PubMed  Google Scholar 

  75. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article  ADS  CAS  Google Scholar 

  76. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Weiss, M. S. Global indicators of X-ray data quality. J. Appl. Crystallogr. 34, 130–135 (2001).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the laboratory of R.S. for comments on the manuscript and discussion; Y. Peleg and S. Albeck for assistance with protein expression; Y. Fridmann-Sirkis for help with surface plasmon resonance analysis; and H. Keren-Shaul and D. Pilzer for help with PacBio sequencing. R.S. was supported, in part, by the European Research Council (grant no. ERC-AdG GA 101018520), the Israel Science Foundation (MAPATS grant 2720/22), the Deutsche Forschungsgemeinschaft (SPP 2330, Grant 464312965), the Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine, and the Knell Family Center for Microbiology. E.Y. is supported by the Clore Scholars Program, and, in part, by the Israeli Council for Higher Education via the Weizmann Data Science Research Center. P.J.K. was supported, in part, by the Pew Biomedical Scholars programme and The Mathers Foundation. S.J.H. is supported through a Cancer Research Institute Irvington Postdoctoral Fellowship (number CRI3996). X-ray data were collected at the Northeastern Collaborative Access Team beamlines 24-ID-C and 24-ID-E (P30 GM124165), and used a Pilatus detector (S10RR029205), an Eiger detector (S10OD021527) and the Argonne National Laboratory Advanced Photon Source (DE-AC02-06CH11357), and at beamline 8.2.1 of the Advanced Light Source, a US Department of Energy Office of Science User Facility under contract number DE-AC02-05CH11231 and supported in part by the Howard Hughes Medical Institute, the ALS-ENABLE programme and the NIGMS grant P30 GM124169-01.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceptualized and designed by E.Y., A. Leavitt and R.S. E.Y. built and executed the computational pipeline and analysed the data. A. Leavitt isolated the phages and conducted all of the in vivo experiments unless stated otherwise. A. Lu and P.J.K. carried out the structural analysis of Tad1 and Tad2. A.E.R. and P.J.K. determined and analysed the structure of Had1. C.A. and G.A. carried out the biochemical experiments with cell lysates and led the mechanistic characterization of the Tad2 activity. I.O. designed and conducted all of the phage knock-in experiments and the knockout of gad2 from the phage SPβL7. J.G. designed and generated the knockdown clones. DNA cleavage experiments were carried out by S.P.A., S.E.M. and P.J.K. S.J.H. helped with the structural analysis, characterization of the Tad2 activity, and analysis of Had1 oligomerization. The study was supervised by G.A. and R.S. The manuscript was written by E.Y. and R.S. All authors contributed to editing the manuscript and support the conclusions.

Corresponding authors

Correspondence to Gil Amitai or Rotem Sorek.

Ethics declarations

Competing interests

R.S. is a scientific co-founder of and adviser for BiomX and Ecophage. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks David Taylor and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Genome comparisons of phages from the SPbeta and SBSphiJ groups.

Genome comparison of (a) eleven phages from the SPbeta group and (b) eight phages from the SBSphiJ group. Amino acid sequence similarity is marked by grey shading. Genome similarity was visualized using clinker56.

Extended Data Fig. 2 Phages from the same family are differentially sensitive to bacterial defense systems.

Results of phage infection experiments with (a) eleven phages of the SPbeta group, (b) six phages of the SPO1 group, and (c) eight phages of the SBSphiJ group. Data represent plaque-forming units per ml (PFU/ml) of phages infecting control cells (“no system”), and cells expressing the respective defense systems. Shown is the average of three technical replicates, with individual data points overlaid. The Thoeris and Hachiman data presented here are the same as those presented in Figs. 3b and 5b, respectively.

Source Data

Extended Data Fig. 3 Gad1 proteins inhibit Gabija mediated defense.

(a) Multiple sequence alignment of the original Gad1 from phage phi3T and five Gad1 homologs that were chosen for experimental verification. Conserved residues are in purple. (b) Results of phage infection experiments with eleven phages of the SPbeta group. Data represent plaque-forming units per ml (PFU/ml) of phages infecting control cells (“no system”), cells expressing the Gabija system (“Gabija”), and cells co-expressing the Gabija system and a Gad1 homolog. Shown is the average of three technical replicates, with individual data points overlaid. The SPbeta data presented here are the same as those presented in Fig. 2d.

Source Data

Extended Data Fig. 4 Gad2 inhibits Gabija mediated defense.

(a) Phylogeny and distribution of Gad2 homologs. Homologs that were tested experimentally are indicated on the tree by cyan diamonds. (b) An Alphafold2 model for the structure of Gad2 from phage SPbetaL7. (c) Mutations in the predicted nucleotidyltransferase active site in Gad2 result in loss of anti-defense activity. Data represent plaque-forming units per ml (PFU/ml) of phage SPbeta infecting cells co-expressing the Gabija system and WT or mutated Gad2 from Brevibacillus laterosporus, as well control cells expressing neither Gabija nor Gad2 (“Control”) and cells expressing the Gabija system without Gad2 (“No Gad2”). Shown is the average of three technical replicates, with individual data points overlaid. (d) SDS-PAGE analysis of Ni-NTA co-purified GajAB with Shewanella phage 1/4 Gad1 and Brevibacillus laterosporus Gad2 demonstrates that Gad2 does not stably interact with the GajAB complex. Asterisk indicates minor contamination with the E. coli protein ArnA. Data are representative of three independent experiments. For gel source data, see Supplementary Fig. 1. (e) SDS-PAGE analysis of purified Brevibacillus laterosporus Gad2. Asterisk indicates contamination with the E. coli protein ArnA. Data are representative of three independent experiments. For gel source data, see Supplementary Fig. 1. (f) Biochemical reconstitution of GajAB DNA degradation demonstrates that Gad2 does not directly inhibit GajAB cleavage of a 56-bp target DNA. Data are representative of three independent experiments. For gel source data, see Supplementary Fig. 1.

Source Data

Extended Data Fig. 5 Tad2 proteins inhibit Thoeris mediated defense.

(a) Multiple sequence alignment of the original Tad2 from phage SPO1, and 5 Tad2 homologs that were chosen for experimental verification. Conserved residues are in purple. Black arrows indicate residues that are involved in 1″–3′ gcADPR binding. (b) Results of phage infection experiments with six phages of the SPO1 group. Data represent plaque-forming units per ml (PFU/ml) of phages infecting control cells (“no system”), cells expressing the Thoeris system (“Thoeris”), and cells co-expressing the Thoeris system and a Tad2 homolog. Shown is the average of three technical replicates, with individual data points overlaid.

Source Data

Extended Data Fig. 6 Tad2 binds 1″–3′ gcADPR.

(a) Incubation of Tad2 with 1″–3′ gcADPR in vitro does not yield observable degradation products. Representative HPLC traces of 1″–3′ gcADPR incubated with buffer, Tad2, or with the enzyme Cap-Clip known to cleave diphosphate linkages as a positive control. (b) Size-exclusion chromatography of 1″–3′ gcADPR-bound or apo state Tad2. 1″–3′ gcADPR-bound Tad2 shows a substantial shift compared to Tad2 in the apo state. (c) Surface plasmon resonance binding sensorgrams for Tad2 at five concentrations of 1″–3′ gcADPR. The black lines are the global fits using the instrument’s evaluation software. ka = 3.42E + 05 ± 5.2E + 02 (1/Ms), kd = 0.00798 ± 1E-05 (1/s). (d) Surface plasmon resonance binding sensorgrams for Tad2 at multiple concentrations of cADPR.

Source Data

Extended Data Fig. 7 Size-exclusion chromatography of Tad2 and various standards.

Observed peak demonstrates that Tad2 forms a homomultimer.

Source Data

Extended Data Fig. 8 Comparison of Tad2 and Tad1 in the apo and ligand-bound states.

(a) Overview of the crystal structure of SPO1 Tad2 in the apo state in front and top view. (b,c) Overview and detailed binding pocket views of adenine interactions (left) and ribose/phosphate interactions (right) of the crystal structures of SPO1 Tad2 in complex with 1″–3′ gcADPR (b) or 1″–2′ gcADPR (c). (d) Overview of the crystal structure (PDB: 7UAV) of cbTad1 in the apo state in front view and top view. (e,f) Overview and detailed binding pocket views of adenine interactions (left) and ribose/phosphate interactions (right) of the crystal structures of cbTad1 in complex with 1″–3′ gcADPR (e) or 1″–2′ gcADPR (f, PDB: 7UAW).

Extended Data Fig. 9 Had1 proteins inhibit Hachiman-mediated defense.

(a) Results of phage infection experiments with eight phages of the SBSphiJ group. Data represent plaque-forming units per ml (PFU/ml) of phages infecting control cells (“no system”), cells expressing the Hachiman system (“Hachiman”), and cells co-expressing the Hachiman system and a Had1 homolog. Shown is the average of three technical replicates, with individual data points overlaid. (b) Structure-guided sequence alignment of Had1 homologs colored by BLOSUM62 score. (c) SDS-PAGE and (d) SEC-MALS analysis of purified Had1. Full-length Had1 elutes as a single species that is consistent with a homodimeric complex (predicted homodimer 12.5 kDa, observed 12.6 kDa). Data are representative of three independent experiments. For gel source data, see Supplementary Fig. 1.

Source Data

Extended Data Table 1 Summary of crystallography data collection, phasing, and refinement statistics

Supplementary information

Supplementary Fig. 1

Uncropped gel images.

Reporting Summary

Peer Review File

Supplementary Tables 1

Supplementary Tables 1–6.

Supplementary Tables 2

Supplementary Tables 7–14.

Supplementary Table 15

Supplementary Table 15.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yirmiya, E., Leavitt, A., Lu, A. et al. Phages overcome bacterial immunity via diverse anti-defence proteins. Nature 625, 352–359 (2024). https://doi.org/10.1038/s41586-023-06869-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06869-w

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology