Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A unified explanation for the morphology of raised peatlands

Abstract

Raised peatlands, or bogs, are gently mounded landforms that are composed entirely of organic matter1,2,3,4 and store the most carbon per area of any terrestrial ecosystem5. The shapes of bogs are critically important because their domed morphology4,6,7 accounts for much of the carbon that bogs store and determines how they will respond to interventions8,9 to stop greenhouse gas emissions and fires after anthropogenic drainage10,11,12,13. However, a general theory to infer the morphology of bogs is still lacking4,6,7. Here we show that an equation based on the processes universal to bogs explains their morphology across biomes, from Alaska, through the tropics, to New Zealand. In contrast to earlier models of bog morphology that attempted to describe only long-term equilibrium shapes4,6,7 and were, therefore, inapplicable to most bogs14,15,16, our approach makes no such assumption and makes it possible to infer full shapes of bogs from a sample of elevations, such as a single elevation transect. Our findings provide a foundation for quantitative inference about the morphology, hydrology and carbon storage of bogs through Earth’s history, as well as a basis for planning natural climate solutions by rewetting damaged bogs around the world.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Monotonic relationship between bog morphology and solution to Poisson’s equation in global peatlands.
Fig. 2: Distribution of bog sites in geographic and climate space.
Fig. 3: The bog-function approach subsumes existing models of bog morphology.
Fig. 4: Estimating whole-bog morphology and irrecoverable carbon stocks from a single elevation transect.

Similar content being viewed by others

Data availability

The lidar and topographic data used in this study are available from the Estonian Topographic Database, the Natural Resources of Canada High Resolution Digital Elevation Model (HRDEM) project, USGS National Map (products LPC AK POW P2 2018 and LPC ARRA-LFTNE MAINE 2010), Minnesota Geospatial Information Office, National Land Survey of Finland, the Brunei Darussalam Survey Department and OpenTopography (collection Huntly, Waikato, New Zealand 2015–2019). The derived data reported in this paper have been deposited in the PANGAEA open access data archive, https://doi.org/10.1594/PANGAEA.931195Source data are provided with this paper.

References

  1. Molengraaff, G. A. F. Borneo Expeditie—Geologische Verkenningstochten in Centraal-Borneo (1893–94) [Borneo Expedition—Geological Reconnaissance in Central Borneo (1893–94)] (Gerlings, 1900).

  2. Weber, C. A. Über die Vegetation und Entstehung des Hochmoors von Augstumal im Memeldelta mit vergleichenden Ausblicken auf andere Hochmoore der Erde; Eine Formationsbiologisch-historische und Geologische Studie (Paul Parey, 1902).

  3. Granlund, E. De svenska högmossarnas geologi. Sveriges Geologiska Undersökningar 26, 1–93 (1932).

    Google Scholar 

  4. Ivanov, K. E. Water Movement in Mirelands (Academic, 1981) [transl.].

  5. Temmink, R. J. M. et al. Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots. Science 376, eabn1479 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Ingram, H. A. P. Size and shape in raised mire ecosystems: a geophysical model. Nature 297, 300–303 (1982).

    Article  ADS  Google Scholar 

  7. Cobb, A. R. et al. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proc. Natl Acad. Sci. 114, E5187–E5196 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Price, J. S., Heathwaite, A. L. & Baird, A. J. Hydrological processes in abandoned and restored peatlands: An overview of management approaches. Wetl. Ecol. Manag. 11, 65–83 (2003).

    Article  CAS  Google Scholar 

  9. Ritzema, H., Limin, S., Kusin, K., Jauhiainen, J. & Wösten, H. Canal blocking strategies for hydrological restoration of degraded tropical peatlands in Central Kalimantan, Indonesia. Catena 114, 11–20 (2014).

    Article  Google Scholar 

  10. Johnston, F. H. et al. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect. 120, 695–701 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Koplitz, S. N. et al. Public health impacts of the severe haze in Equatorial Asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environ. Res. Lett. 11, 094023 (2016).

    Article  ADS  Google Scholar 

  12. Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C. & Page, S. E. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environ. Res. Lett. 12, 024014 (2017).

    Article  ADS  Google Scholar 

  13. Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947 (2019).

    Article  CAS  ADS  Google Scholar 

  14. Limpens, J. et al. Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences 5, 1475–1491 (2008).

    Article  CAS  ADS  Google Scholar 

  15. Lund, M. et al. Variability in exchange of CO2 across 12 northern peatland and tundra sites. Glob. Change Biol. 16, 2436–2448 (2010).

    Article  Google Scholar 

  16. Hirano, T., Jauhiainen, J., Inoue, T. & Takahashi, H. Controls on the carbon balance of tropical peatlands. Ecosystems 12, 873–887 (2009).

    Article  CAS  Google Scholar 

  17. Gorham, E. The development of peat lands. Q. Rev. Biol. 32, 145–166 (1957).

    Article  Google Scholar 

  18. Anderson, J. A. R. The structure and development of the peat swamps of Sarawak and Brunei. J. Trop. Geogr. 18, 7–16 (1964).

    Google Scholar 

  19. Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Rydin, H. & Jeglum, J. The Biology of Peatlands (Oxford Univ. Press, 2006).

  21. Lähteenoja, O., Flores, B. & Nelson, B. Tropical peat accumulation in Central Amazonia. Wetlands 33, 495–503 (2013).

    Article  Google Scholar 

  22. Dargie, G. C. et al. Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Chang. 24, 669–686 (2019).

    Article  Google Scholar 

  23. Gorham, E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1, 182–195 (1991).

    Article  PubMed  Google Scholar 

  24. Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).

    Article  ADS  Google Scholar 

  25. Frolking, S. et al. Peatlands in the Earth’s 21st century climate system. Environ. Rev. 19, 371–396 (2011).

    Article  CAS  Google Scholar 

  26. Dommain, R. et al. A radiative forcing analysis of tropical peatlands before and after their conversion to agricultural plantations. Glob. Change Biol. 24, 5518–5533 (2018).

    Article  ADS  Google Scholar 

  27. Ritzema, H. P. (ed.) Drainage Principles and Applications (International Institute for Land Reclamation and Improvement, 1994).

  28. Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2014).

    Article  ADS  Google Scholar 

  29. Morecroft, M. D. et al. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366, eaaw9256 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Change 10, 287–295 (2020).

    Article  CAS  ADS  Google Scholar 

  31. Korpela, I., Koskinen, M., Vasander, H., Holopainen, M. & Minkkinen, K. Airborne small-footprint discrete-return LiDAR data in the assessment of boreal mire surface patterns, vegetation, and habitats. For. Ecol. Manag. 258, 1549–1566 (2009).

    Article  Google Scholar 

  32. Vernimmen, R. et al. Creating a lowland and peatland landscape digital terrain model (DTM) from interpolated partial coverage LiDAR data for Central Kalimantan and East Sumatra, Indonesia. Remote Sens. 11, 1152 (2019).

    Article  ADS  Google Scholar 

  33. Warren, M., Hergoualc’h, K., Kauffman, J. B., Murdiyarso, D. & Kolka, R. An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance Manage. 12, 12 (2017).

    Article  Google Scholar 

  34. Greb, S. F., DiMichele, W. A. & Gastaldo, R. A. in Wetlands Through Time (eds. Greb, S. F. & DiMichele, W. A.) 1–40 (Geological Society of America, 2006).

  35. Morley, R. J. Cenozoic ecological history of South East Asian peat mires based on the comparison of coals with present day and Late Quaternary peats. J. Limnol. 72, 36–59 (2013).

    Article  Google Scholar 

  36. Treat, C. C. et al. Widespread global peatland establishment and persistence over the last 130,000 y. Proc. Natl Acad. Sci. 116, 4822–4827 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Crezee, B. et al. Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Nat. Geosci. 15, 639–644 (2022).

    Article  CAS  ADS  Google Scholar 

  38. Hastie, A. et al. Risks to carbon storage from land-use change revealed by peat thickness maps of Peru. Nat. Geosci. 15, 369–374 (2022).

    Article  CAS  ADS  Google Scholar 

  39. Childs, E. C. & Youngs, E. G. A study of some three-dimensional field-drainage problems. Soil Sci. 92, 15–24 (1961).

    Article  ADS  Google Scholar 

  40. Baird, A. J. et al. High permeability explains the vulnerability of the carbon store in drained tropical peatlands. Geophys. Res. Lett. 44, 1333–1339 (2017).

    Article  ADS  Google Scholar 

  41. Cobb, A. R. & Harvey, C. F. Scalar simulation and parameterization of water table dynamics in tropical peatlands. Water Resour. Res. 55, 9351–9377 (2019).

    Article  ADS  Google Scholar 

  42. Morris, P. J., Baird, A. J., Eades, P. A. & Surridge, B. W. J. Controls on near-surface hydraulic conductivity in a raised bog. Water Resour. Res. 55, 1531–1543 (2019).

    Article  ADS  Google Scholar 

  43. Noon, M. L. et al. Mapping the irrecoverable carbon in Earth’s ecosystems. Nat. Sustain. 5, 37–46 (2021).

    Article  Google Scholar 

  44. Tay, T. H. The distribution, characteristics, uses and potential of peat in West Malaysia. J. Trop. Geogr. 29, 58–63 (1969).

    Google Scholar 

  45. Lim, K. H., Lim, S. S., Parish, F. & Suharto, R. (eds) RSPO Manual on Best Management Practices (BMPs) for Existing Oil Palm Cultivation on Peat (Roundtable on Sustainable Palm Oil, 2012).

  46. Holden, J., Chapman, P. J. & Labadz, J. C. Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Prog. Phys. Geog. 28, 95–123 (2004).

    Article  Google Scholar 

  47. Andriesse, J. P. Nature and management of tropical peat soils. FAO Soils Bulletin https://www.fao.org/3/x5872e/x5872e00.htm (1988).

  48. Silvestri, S. et al. Quantification of peat thickness and stored carbon at the landscape scale in tropical peatlands: a comparison of airborne geophysics and an empirical topographic method. J. Geophys. Res. Earth Surf. 124, 3107–3123 (2019).

    Article  CAS  ADS  Google Scholar 

  49. Parry, L. E., Holden, J. & Chapman, P. J. Restoration of blanket peatlands. J. Environ. Manage. 133, 193–205 (2014).

    Article  PubMed  Google Scholar 

  50. Dommain, R. et al. in Peatland Restoration and Ecosystem Services (eds. Bonn, A., Allott, T., Evans, M., Joosten, H. & Stoneman, R.) 253–288 (Cambridge Univ. Press, 2016).

  51. Martin-Ortega, J., Allott, T. E. H., Glenk, K. & Schaafsma, M. Valuing water quality improvements from peatland restoration: evidence and challenges. Ecosyst. Serv. 9, 34–43 (2014).

    Article  Google Scholar 

  52. Hidayat, H., Hoekman, D. H., Vissers, M. A. M. & Hoitink, A. J. F. Flood occurrence mapping of the middle Mahakam lowland area using satellite radar. Hydrol. Earth Syst. Sci. 16, 1805–1816 (2012).

    Article  ADS  Google Scholar 

  53. Cecil, C. B. et al. Paleoclimate controls on Late Paleozoic sedimentation and peat formation in the central Appalachian basin (USA). Int. J. Coal Geol. 5, 195–230 (1985).

    Article  Google Scholar 

  54. Greb, S. F. et al. in Extreme Depositional Environments: Mega End Members in Geologic Time (eds. Chan, M. A. & Archer, A. W.) 127–150 (Geological Society of America, 2003).

  55. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  56. Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).

    Article  Google Scholar 

  57. Korhola, A. A. Radiocarbon evidence for rates of lateral expansion in raised mires in southern Finland. Quat. Res. 42, 299–307 (1994).

    Article  Google Scholar 

  58. Edom, F., Münch, A., Dittrich, I., Keßler, K. & Peters, R. Hydromorphological analysis and water balance modelling of ombro- and mesotrophic peatlands. Adv. Geosci. 27, 131–137 (2010).

    Article  Google Scholar 

  59. Hooijer, A. in Forests, Water and People in the Humid Tropics (eds. Bonell, M. & Bruijnzeel, L. A.) 447–461 (Cambridge Univ. Press, 2005).

  60. Rezanezhad, F. et al. Structure of peat soils and implications for water storage, flow and solute transport: a review update for geochemists. Chem. Geol. 429, 75–84 (2016).

    Article  CAS  ADS  Google Scholar 

  61. Baird, A. J., Eades, P. A. & Surridge, B. W. J. The hydraulic structure of a raised bog and its implications for ecohydrological modelling of bog development. Ecohydrology 1, 289–298 (2008).

    Article  Google Scholar 

  62. Heinselman, M. L. Forest sites, bog processes, and peatland types in the Glacial Lake Agassiz region, Minnesota. Ecol. Monogr. 33, 327–374 (1963).

    Article  Google Scholar 

  63. Glaser, P. H. & Janssens, J. A. Raised bogs in eastern North America: transitions in landforms and gross stratigraphy. Can. J. Bot. 64, 395–415 (1986).

    Article  Google Scholar 

  64. Cobb, A. R., Dommain, R., Tan, F., Heng, N. H. E. & Harvey, C. F. Carbon storage capacity of tropical peatlands in natural and artificial drainage networks. Environ. Res. Lett. 15, 114009 (2020).

    Article  CAS  ADS  Google Scholar 

  65. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in C: The Art of Scientific Computing 2nd edn (Cambridge Univ. Press, 1992).

  66. Averick, B. M. & Ortega, J. M. Fast solution of nonlinear Poisson-type equations. SIAM J. Sci. Comput. 14, 44–48 (1993).

    Article  MathSciNet  Google Scholar 

  67. Youngs, E. G. Horizontal seepage through unconfined aquifers with hydraulic conductivity varying with depth. J. Hydrol. 3, 283–296 (1965).

    Article  ADS  Google Scholar 

  68. Youngs, E. G. An examination of computed steady-state water-table heights in unconfined aquifers: Dupuit-Forchheimer estimates and exact analytical results. J. Hydrol. 119, 201–214 (1990).

    Article  ADS  Google Scholar 

  69. Belyea, L. R. & Baird, A. J. Beyond “the limits to peat bog growth”: cross-scale feedback in peatland development. Ecol. Monogr. 76, 299–322 (2006).

    Article  Google Scholar 

  70. GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction software Library, version 2.3.2 (Open Source Geospatial Foundation, 2018).

  71. GRASS Development Team. Geographic Resources Analysis Support System (GRASS GIS) software, version 7.4.4 (Open Source Geospatial Foundation, 2018).

  72. Dachnowski-Stokes, A. P. Peat resources in Alaska. Technical Bulletin 769, United States Department of Agriculture (1941).

  73. Glaser, P. H., Janssens, J. A. & Siegel, D. I. The response of vegetation to chemical and hydrological gradients in the Lost River peatland, Northern Minnesota. J. Ecol. 78, 1021–1048 (1990).

    Article  Google Scholar 

  74. Gorham, E., Janssens, J. A. & Glaser, P. H. Rates of peat accumulation during the postglacial period in 32 sites from Alaska to Newfoundland, with special emphasis on northern Minnesota. Can. J. Bot. 81, 429–438 (2003).

    Article  Google Scholar 

  75. Raymond, R., Cameron, C. C. & Cohen, A. D. Relationship between peat geochemistry and depositional environments, Cranberry Island, Maine. Int. J. Coal Geol. 8, 175–187 (1987).

    Article  CAS  Google Scholar 

  76. Korhola, A., Alm, J., Tolonen, K., Turunen, J. & Jungner, H. Three-dimensional reconstruction of carbon accumulation and CH4 emission during nine millennia in a raised mire. J. Quat. Sci. 11, 161–165 (1996).

    Article  Google Scholar 

  77. Salm, J.-O. et al. Emissions of CO2, CH4 and N2O from undisturbed, drained and mined peatlands in Estonia. Hydrobiologia 692, 41–55 (2012).

    Article  CAS  Google Scholar 

  78. Ilomets, M. in Mires and Peatlands of Europe (eds. Joosten, H., Tanneberger, F. & Moen, A.) 360–371 (Schweizerbart’sche Verlagsbuchhandlung, 2017).

  79. Anderson, J. A. R. The Ecology and Forest Types of the Peat Swamp Forests of Sarawak and Brunei in Relation to their Silviculture. PhD thesis, Univ. Edinburgh (1961).

  80. Maggs, G. R. Hydrology of the Kopouatai peat dome. J. Hydrol. N. Z. 36, 147–172 (1997).

    Google Scholar 

  81. Clarkson, B. R., Schipper, L. A. & Lehmann, A. Vegetation and peat characteristics in the development of lowland restiad peat bogs, North Island, New Zealand. Wetlands 24, 133–151 (2004).

    Article  Google Scholar 

  82. Thornburrow, B., Williamson, J. & Outram, P. Kopuatai Peat Dome Drainage & Desktop Hydrological Study: Report Prepared for New Zealand Department of Conservation (Sinclair Knight Merz, 2009).

  83. Newnham, R. M. et al. Peat humification records from Restionaceae bogs in northern New Zealand as potential indicators of Holocene precipitation, seasonality, and ENSO. Quat. Sci. Rev. 218, 378–394 (2019).

    Article  ADS  Google Scholar 

  84. Sjörs, H. Bogs and fens in the Hudson Bay lowlands. Arctic 12, 2–19 (1959).

    Article  Google Scholar 

  85. Glaser, P. H., Siegel, D. I., Reeve, A. S. & Chanton, J. P. in Peatlands: Evolution and Records of Environmental and Climate Changes (eds. Martini, I. P., Martinez Cortízas, A., & Chesworth, W.) 347–376 (Elsevier, 2006).

  86. Vitt, D. H. in Boreal Peatland Ecosystems (eds. Wieder, R. K. & Vitt, D. H.) 9–24 (Springer, 2006).

  87. Honorio Coronado, E. N. et al. Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests. Environ. Res. Lett. 16, 074048 (2021).

    Article  ADS  Google Scholar 

  88. Bradof, K. L. in The Patterned Peatlands of Minnesota (eds. Wright, Jr., H. E., Coffin, B. A. & Aaseng, N. E.) 263–284 (Univ. Minnesota Press, 1992).

  89. Bradof, K. L. in The Patterned Peatlands of Minnesota (eds. Wright, Jr, H. E., Coffin, B. A. & Aaseng, N. E.) 173–186 (Univ. Minnesota Press, 1992).

  90. Geuzaine, C. & Remacle, J.-F. Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009).

    Article  MathSciNet  Google Scholar 

  91. Bangerth, W., Hartmann, R. & Kanschat, G. deal.II—a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33, 24/1–24/27 (2007).

    Article  MathSciNet  Google Scholar 

  92. Arndt, D. et al. The deal.II library, version 9.1. J. Numer. Math. 27, 203–213 (2019).

    Article  MathSciNet  Google Scholar 

  93. Iman, R. L. & Conover, W. J. The use of the rank transform in regression. Technometrics 21, 499–509 (1979).

    Article  Google Scholar 

  94. Simpson, J., Smith, T. & Wooster, M. Assessment of errors caused by forest vegetation structure in airborne LiDAR-derived DTMs. Remote Sens. 9, 1101 (2017).

    Article  ADS  Google Scholar 

  95. Lampela, M. et al. Ground surface microtopography and vegetation patterns in a tropical peat swamp forest. Catena 139, 127–136 (2016).

    Article  CAS  Google Scholar 

  96. Campbell, E. O. in Ecosystems of the World, 4B: Mires: Swamp, Bog, Fen and Moor: Regional Studies (ed. Gore, A. J. P.) 153–180 (Elsevier, 1983).

  97. Heathwaite, A. L., Eggelsmann, R. & Göttlich, K. H. in Mires: Process, Exploitation and Conservation (eds. Heathwaite, A. L. & Göttlich, Kh.) 417–484 (Wiley, 1993).

  98. Mulqueen, J. Hydrology and drainage of peatland. Environ. Geology Water Sci. 9, 15–22 (1986).

    Article  ADS  Google Scholar 

  99. Joosten, H., Tapio-Biström, M.-L., & Susanna Tol, S. (eds) Peatlands — Guidance for Climate Change Mitigation through Conservation, Rehabilitation and Sustainable Use Vol. 5, 2nd edn (Food and Agriculture Organization of the United Nations and Wetlands International, 2012).

  100. Joosten, H. & Tanneberger, F. in Mires and Peatlands of Europe (eds. Joosten, H., Tanneberger, F. & Moen, A.) 151–172 (Schweizerbart’sche Verlagsbuchhandlung, 2017).

  101. Cobb, A. R., Dommain, R., Yeap, K. & Cao, H. Raster grids of eight bogs in North America, Europe, Borneo, and New Zealand. PANGAEA https://doi.org/10.1594/PANGAEA.931195 (2023).

  102. Emery, K. O., Wigley, R. L., Bartlett, A. S., Rubin, M. & Barghoorn, E. S. Freshwater peat on the continental shelf. Science 158, 1301–1307 (1967).

    Article  CAS  PubMed  ADS  Google Scholar 

  103. Situmorang, M., Kuntoro, Faturachman, A., Ilahude, D. & Siregar, D. A. Distribution and characteristics of Quaternary peat deposits in eastern Jawa Sea. Bull. Mar. Geol. Inst. Indon. 8, 9–20 (1993).

    Google Scholar 

  104. Kremenetski, K. V. et al. Peatlands of the Western Siberian lowlands: current knowledge on zonation, carbon content and Late Quaternary history. Quat. Sci. Rev. 22, 703–723 (2003).

    Article  ADS  Google Scholar 

  105. Dommain, R., Couwenberg, J. & Joosten, H. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat. Sci. Rev. 30, 999–1010 (2011).

    Article  ADS  Google Scholar 

  106. Ruppel, M., Väliranta, M., Virtanen, T. & Korhola, A. Postglacial spatiotemporal peatland initiation and lateral expansion dynamics in North America and northern Europe. Holocene 23, 1596–1606 (2013).

    Article  ADS  Google Scholar 

  107. Comas, X., Slater, L. & Reeve, A. Geophysical evidence for peat basin morphology and stratigraphic controls on vegetation observed in a Northern Peatland. J. Hydrol. 295, 173–184 (2004).

    Article  ADS  Google Scholar 

  108. Comas, X. et al. Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization. Biogeosciences 12, 2995–3007 (2015).

    Article  ADS  Google Scholar 

  109. Suhip, M. A. A., Gödeke, S. H., Cobb, A. R. & Sukri, R. S. Seismic refraction study, single well test and physical core analysis of anthropogenic degraded peat at the Badas Peat Dome, Brunei Darussalam. Eng. Geol. 273, 105689 (2020).

    Article  Google Scholar 

  110. Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24, 1028–1042 (2014).

    Article  ADS  Google Scholar 

  111. Korhola, A., Tolonen, K., Turunen, J. & Jungner, H. Estimating long-term carbon accumulation rates in boreal peatlands by radiocarbon dating. Radiocarbon 37, 575–584 (1995).

    Article  CAS  Google Scholar 

  112. Dommain, R. et al. Forest dynamics and tip-up pools drive pulses of high carbon accumulation rates in a tropical peat dome in Borneo (Southeast Asia). J. Geophys. Res. Biogeosci. 120, 617–640 (2015).

    Article  CAS  Google Scholar 

  113. Schipper, L. A. & McLeod, M. Subsidence rates and carbon loss in peat soils following conversion to pasture in the Waikato Region, New Zealand. Soil Use Manag. 18, 91–93 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Ratcliffe for pointing us to lidar data for Kopuatai and to J. Cobb, A. Konings, J. Ratcliffe, H. A. Stone and D. Wardle for critical comments on the manuscript. This research was supported by the National Research Foundation Singapore through the Singapore-MIT Alliance for Research and Technology’s Center for Environmental Sensing and Modeling interdisciplinary research programme and grant nos. NRF2016-ITCOO1-021 and NRF2019-ITC001-001, by the US National Science Foundation under grants no. 1923491 and 2039771 and by the Office for Space Technology and Industry (OSTIn), Singapore’s national space office, through its Space Technology Development Programme (grant no. S22-02005-STDP). This work comprises EOS contribution 552. Lidar and topographic data were provided by the Estonian Topographic Database, the Natural Resources of Canada High Resolution Digital Elevation Model (HRDEM) project, USGS National Map, Minnesota Geospatial Information Office, National Land Survey of Finland, Brunei Darussalam Survey Department and OpenTopography.

Author information

Authors and Affiliations

Authors

Contributions

A.R.C. conceived the study, performed the analysis, prepared the figures and drafted the paper. A.R.C., C.H., K.Y. and R.D. identified and outlined bog sites with lidar data and developed the workflow for the creation of digital terrain maps and meshing of bog polygons. B.B., C.F.H. and P.H.G. supervised and provided feedback on the study design. A.R.C., B.B., C.F.H., N.C.D. and R.D. participated in editing of the final manuscript and all authors contributed to review and data interpretation.

Corresponding author

Correspondence to Alexander R. Cobb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Julie Loisel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Inferring morphology of bogs with ditching.

Analysis of a bog cut by a ditch in Lost River peatland, Minnesota. Bog boundaries, lidar-derived surface elevations and approximations to bog morphology obtained by transforming the solution to Poisson’s equation to bog-surface elevations as in Fig. 1. Top, analysis of peatland boundary, ignoring ditch. If the ditch is ignored, the rank correlation between surface elevations and Poisson elevations is lower (0.98) because the assumptions underlying our approach are not valid in the ditch, in which open-channel flow occurs. Bottom, analysis of a subdomain that excludes the ditch, showing excellent agreement with the lidar topography (ρ = 0.99). The correlation coefficient is also improved (0.98 versus 0.96), despite the smaller total relief within the subdomain boundary (2.45 m versus 4.21 m) relative to microtopographic relief (about 0.3 m). Satellite images: Google, Landsat/Copernicus.

Extended Data Fig. 2 Reanalysis of topography, time-averaged water table and hydraulic transmissivity in a dynamic model.

a, Location of flowtube on the Mendaram bog for the simulation shown in Fig. 7 of ref. 7. Satellite image: CNES/Airbus, Google, Maxar Technologies. b, Simulated water level, relative to local depressions, in the bog interior and at the bog margin, driven by recharge derived from weather station rainfall. The data intervals that are shown correspond to calendar years 2001, 2003 and 2007. c, Minimum and maximum water tables within the flowtube for 2001, 2003 and 2007 (2007 overlies other years). d, Distribution of water level for 2001, 2003 and 2007 (same colour scheme as b) for bog interior (solid lines) and margin (dashed lines); interior and margin time series are plotted in b but are not distinguishable. e,f, Hydraulic transmissivity in the model as a function of water level (black line) and time-averaged transmissivity and water level along the flowtube (coloured points) in the three simulation years. g, Average transmissivity divided by net recharge versus surface elevation for 2001, 2003 and 2007. h, Bog surface (dashed line) and time-averaged water table H (coloured lines) versus Poisson elevation ϕ for 2001, 2003 and 2007 (2007 overlies other years).

Extended Data Fig. 3 Inferring morphology of bogs with incomplete elevation data.

a, Milot: available elevation data exclude southeast corner of bog. b, Mendaram: elevation data end at national boundary. c, Rivers bounding Mendaram bog are obscured by floating vegetation but visible in high-resolution images. d, Estimated bog crest (groundwater divide) and flowlines used as no-flow (Neumann) boundaries. The location of the groundwater divide was estimated from available elevation data and the larger topographic setting (b). Satellite images: CNES/Airbus, Google, Maxar Technologies.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cobb, A.R., Dommain, R., Yeap, K. et al. A unified explanation for the morphology of raised peatlands. Nature 625, 79–84 (2024). https://doi.org/10.1038/s41586-023-06807-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06807-w

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene