Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A 12.4-day periodicity in a close binary system after a supernova

Abstract

Neutron stars and stellar-mass black holes are the remnants of massive star explosions1. Most massive stars reside in close binary systems2, and the interplay between the companion star and the newly formed compact object has been theoretically explored3, but signatures for binarity or evidence for the formation of a compact object during a supernova explosion are still lacking. Here we report a stripped-envelope supernova, SN 2022jli, which shows 12.4-day periodic undulations during the declining light curve. Narrow Hα emission is detected in late-time spectra with concordant periodic velocity shifts, probably arising from hydrogen gas stripped from a companion and accreted onto the compact remnant. A new Fermi-LAT γ-ray source is temporally and positionally consistent with SN 2022jli. The observed properties of SN 2022jli, including periodic undulations in the optical light curve, coherent Hα emission shifting and evidence for association with a γ-ray source, point to the explosion of a massive star in a binary system leaving behind a bound compact remnant. Mass accretion from the companion star onto the compact object powers the light curve of the supernova and generates the γ-ray emission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiband light curves of SN 2022jli showing periodic undulations.
Fig. 2: Multiband periodogram and the undulation profile of SN 2022jli.
Fig. 3: The spectral evolution of SN 2022jli between +139 days and +280 days after discovery.
Fig. 4: The pseudo-bolometric light curve and multi-frequency data of SN 2022jli.

Similar content being viewed by others

Data availability

Photometry and spectroscopy of SN 2022jli will be made available at the WISeREP public database. Facilities that make all their data available in public archives promptly or after a proprietary period include Palomar 48-inch/ZTF, VLT/X-shooter, NuSTAR, Chandra X-ray Observatory and Fermi Gamma-Ray Space Telescope. Data from the ATLAS, Gaia, ASAS-SN and KKO were obtained from public sources. The data used to perform the analysis and produce the figures for this paper are available at a public GitHub repository (https://github.com/AtomyChan/SN2022jli).

Code availability

The codes used to perform the analysis and produce the figures for this paper are available at a public GitHub repository (https://github.com/AtomyChan/SN2022jli).

References

  1. Heger, A., Fryer, C. L., Woosley, S. E., Langer, N. & Hartmann, D. H. How massive single stars end their life. Astrophys. J. 591, 288–300 (2003).

    Article  ADS  Google Scholar 

  2. Sana, H. et al. Binary interaction dominates the evolution of massive stars. Science 337, 444–446 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Hirai, R. & Podsiadlowski, P. Neutron stars colliding with binary companions: formation of hypervelocity stars, pulsar planets, bumpy superluminous supernovae and Thorne-Żytkow objects. Mon. Not. R. Astron. Soc. 517, 4544–4556 (2022).

    Article  ADS  CAS  Google Scholar 

  4. Gal-Yam, A. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 195–237 (Springer, 2017).

  5. Nicholl, M. et al. SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. Astrophys. J. 826, 39 (2016).

    Article  ADS  Google Scholar 

  6. Yan, L. et al. Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the Intermediate Palomar Transient Factory. Astrophys. J. 848, 6 (2017).

    Article  ADS  Google Scholar 

  7. Hosseinzadeh, G. et al. Bumpy declining light curves are common in hydrogen-poor superluminous supernovae. Astrophys. J. 933, 14 (2022).

    Article  ADS  Google Scholar 

  8. West, S. L. et al. SN 2020qlb: a hydrogen-poor superluminous supernova with well-characterized light curve undulations. Astron. Astrophys. 670, A7 (2023).

    Article  CAS  Google Scholar 

  9. Chen, Z. H. et al. The hydrogen-poor superluminous supernovae from the Zwicky Transient Facility Phase I Survey. II. Light-curve modeling and characterization of undulations. Astrophys. J. 943, 42 (2023).

    Article  ADS  Google Scholar 

  10. Bonanos, A. Z. & Boumis, P. Evidence for rapid variability in the optical light curve of the Type Ia SN 2014J. Astron. Astrophys. 585, A19 (2016).

    Article  ADS  Google Scholar 

  11. Gal-Yam, A. et al. Supernova 2007bi as a pair-instability explosion. Nature 462, 624–627 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Matheson, T., Filippenko, A. V., Li, W., Leonard, D. C. & Shields, J. C. Optical spectroscopy of type Ib/c supernovae. Astron. J. 121, 1648–1675 (2001).

    Article  ADS  Google Scholar 

  13. Mazzali, P. A. et al. Properties of two hypernovae entering the nebular phase: SN 1997ef and SN 1997dq. Astrophys. J. 614, 858–863 (2004).

    Article  ADS  CAS  Google Scholar 

  14. Milisavljevic, D. et al. SN 2012au: a golden link between superluminous supernovae and their lower-luminosity counterparts. Astrophys. J. Lett. 770, L38 (2013).

    Article  ADS  Google Scholar 

  15. Taddia, F. et al. The luminous late-time emission of the type-Ic supernova iPTF15dtg - evidence for powering from a magnetar? Astron. Astrophys. 621, A64 (2019).

    Article  CAS  Google Scholar 

  16. Zdziarski, A. A. & Svensson, R. Absorption of X-rays and gamma rays at cosmological distances. Astrophys. J. 344, 551–566 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Acharyya, A. et al. VERITAS and Fermi-LAT constraints on the gamma-ray emission from superluminous supernovae SN2015bn and SN2017egm. Astrophys. J. 945, 30 (2023).

    Article  ADS  Google Scholar 

  18. Chatzopoulos, E. & Wheeler, J. C. Hydrogen-poor circumstellar shells from pulsational pair-instability supernovae with rapidly rotating progenitors. Astrophys. J. 760, 154 (2012).

    Article  ADS  Google Scholar 

  19. Chevalier, R. A. & Fransson, C. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 875–937 (Springer, 2017).

  20. Chen, T. W. et al. The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. Astron. Astrophys. 602, A9 (2017).

    Article  Google Scholar 

  21. Lau, R. M. et al. Nested dust shells around the Wolf–Rayet binary WR 140 observed with JWST. Nat. Astron. 6, 1308–1316 (2022).

    Article  ADS  Google Scholar 

  22. Ofek, E. O. et al. SN 2010jl: optical to hard X-ray observations reveal an explosion embedded in a ten solar mass cocoon. Astrophys. J. 781, 42 (2014).

    Article  ADS  Google Scholar 

  23. Zhu, J. et al. SN 2017egm: A helium-rich superluminous supernova with multiple bumps in the light curves. Astrophys. J. 949, 23 (2023).

    Article  ADS  Google Scholar 

  24. Michel, F. C. Neutron star disk formation from supernova fall-back and possible observational consequences. Nature 333, 644–645 (1988).

    Article  ADS  Google Scholar 

  25. Chevalier, R. A. Neutron star accretion in a supernova. Astrophys. J. 346, 847 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Zhang, W., Woosley, S. E. & Heger, A. Fallback and black hole production in massive stars. Astrophys. J. 679, 639–654 (2008).

    Article  ADS  Google Scholar 

  27. Dexter, J. & Kasen, D. Supernova light curves powered by fallback accretion. Astrophys. J. 772, 30 (2013).

    Article  ADS  Google Scholar 

  28. Moriya, T. J., Nicholl, M. & Guillochon, J. Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. Astrophys. J. 867, 113 (2018).

    Article  ADS  CAS  Google Scholar 

  29. Moriya, T. J., Müller, B., Chan, C., Heger, A. & Blinnikov, S. I. Fallback accretion-powered supernova light curves based on a neutrino-driven explosion simulation of a 40 M star. Astrophys. J. 880, 21 (2019).

    Article  ADS  CAS  Google Scholar 

  30. Zanin, R. et al. Gamma rays detected from Cygnus X-1 with likely jet origin. Astron. Astrophys. 596, A55 (2016).

    Article  Google Scholar 

  31. Akashi, M. & Soker, N. Simulating jets from a neutron star companion hours after a core-collapse supernova. Astrophys. J. 901, 53 (2020).

    Article  ADS  CAS  Google Scholar 

  32. Hober, O., Bear, E. & Soker, N. Feeding post-core collapse supernova explosion jets with an inflated main sequence companion. Mon. Not. R. Astron. Soc. 516, 1846–1854 (2022).

    Article  ADS  CAS  Google Scholar 

  33. Renzo, M. et al. Massive runaway and walkaway stars. A study of the kinematical imprints of the physical processes governing the evolution and explosion of their binary progenitors. Astron. Astrophys. 624, A66 (2019).

    Article  CAS  Google Scholar 

  34. Chrimes, A. A. et al. Where are the magnetar binary companions? Candidates from a comparison with binary population synthesis predictions. Mon. Not. R. Astron. Soc. 513, 3550–3563 (2022).

    Article  ADS  CAS  Google Scholar 

  35. Monard, L. Transient Discovery Report for 2022-05-05. Transient Name Server Discovery Report 2022-1198 (2022).

  36. Tonry, J. L. et al. ATLAS: a high-cadence all-sky survey system. Publ. Astron. Soc. Pac. 130, 064505 (2018).

    Article  ADS  Google Scholar 

  37. Hodgkin, S. T. et al. Gaia Early Data Release 3. Gaia photometric science alerts. Astron. Astrophys. 652, A76 (2021).

    Article  Google Scholar 

  38. Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at https://doi.org/10.48550/arXiv.1612.05560(2016).

  39. Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).

    Article  ADS  Google Scholar 

  40. Graham, M. J. et al. The Zwicky Transient Facility: science objectives. Publ. Astron. Soc. Pac. 131, 078001 (2019).

    Article  ADS  Google Scholar 

  41. Mould, J. R. et al. The Hubble Space Telescope Key Project on the extragalactic distance scale. XXVIII. Combining the constraints on the Hubble constant. Astrophys. J. 529, 786–794 (2000).

    Article  ADS  Google Scholar 

  42. Komatsu, E. et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2011).

    Article  ADS  Google Scholar 

  43. Riess, A. G. et al. A comprehensive measurement of the local value of the Hubble constant with 1 km s−1 Mpc−1 uncertainty from the Hubble Space Telescope and the SH0ES team. Astrophys. J. Lett. 934, L7 (2022).

    Article  ADS  Google Scholar 

  44. Nasonova, O. G., de Freitas Pacheco, J. A. & Karachentsev, I. D. Hubble flow around Fornax cluster of galaxies. Astron. Astrophys. 532, A104 (2011).

    Article  Google Scholar 

  45. Tully, R. B. et al. Cosmicflows-2: the data. Astron. J. 146, 86 (2013).

    Article  ADS  Google Scholar 

  46. Erwin, P. & Debattista, V. P. The frequency and stellar-mass dependence of boxy/peanut-shaped bulges in barred galaxies. Mon. Not. R. Astron. Soc. 468, 2058–2080 (2017).

    Article  ADS  Google Scholar 

  47. Poznanski, D., Prochaska, J. X. & Bloom, J. S. An empirical relation between sodium absorption and dust extinction. Mon. Not. R. Astron. Soc. 426, 1465–1474 (2012).

    Article  ADS  CAS  Google Scholar 

  48. Lan, T.-W., Ménard, B. & Zhu, G. Exploring the diffuse interstellar bands with the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 452, 3629–3649 (2015).

    Article  ADS  CAS  Google Scholar 

  49. Fan, H. et al. The Apache Point Observatory Catalog of Optical Diffuse Interstellar Bands. Astrophys. J. 878, 151 (2019).

    Article  ADS  CAS  Google Scholar 

  50. Dekany, R. et al. The Zwicky Transient Facility: observing system. Publ. Astron. Soc. Pac. 132, 038001 (2020).

    Article  ADS  Google Scholar 

  51. Masci, F. J. et al. The Zwicky Transient Facility: data processing, products, and archive. Publ. Astron. Soc. Pac. 131, 018003 (2019).

    Article  ADS  Google Scholar 

  52. Zackay, B., Ofek, E. O. & Gal-Yam, A. Proper image subtraction—optimal transient detection, photometry, and hypothesis testing. Astrophys. J. 830, 27 (2016).

    Article  ADS  Google Scholar 

  53. Cenko, S. B. et al. The automated Palomar 60 inch telescope. Publ. Astron. Soc. Pac. 118, 1396–1406 (2006).

    Article  ADS  Google Scholar 

  54. Blagorodnova, N. et al. The SED machine: a robotic spectrograph for fast transient classification. Publ. Astron. Soc. Pac. 130, 035003 (2018).

    Article  ADS  Google Scholar 

  55. Fremling, C. et al. PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806. Astron. Astrophys. 593, A68 (2016).

    Article  Google Scholar 

  56. van der Walt, S., Crellin-Quick, A. & Bloom, J. S. SkyPortal: an astronomical data platform. J. Open Source Softw. 4, 1247 (2019).

    Article  ADS  Google Scholar 

  57. Coughlin, M. W. et al. A data science platform to enable time-domain astronomy. Astrophys. J. Suppl. Ser. 267, 31 (2023).

    Article  ADS  Google Scholar 

  58. Shappee, B. J. et al. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys. J. 788, 48 (2014).

    Article  ADS  Google Scholar 

  59. Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0. Publ. Astron. Soc. Pac. 129, 104502 (2017).

    Article  ADS  Google Scholar 

  60. Smith, K. W. et al. Design and operation of the ATLAS transient science server. Publ. Astron. Soc. Pac. 132, 085002 (2020).

    Article  ADS  Google Scholar 

  61. Chen, P. et al. The first data release of CNIa0.02—A complete nearby (redshift < 0.02) sample of type Ia supernova light curves. Astrophys. J. Suppl. Ser. 259, 53 (2022).

    Article  ADS  Google Scholar 

  62. Liu, X. Multi-channel Photometric Survey Telescope—Mephisto. In Electronic Proceedings of 'Galactic Archaeology in the Gaia Era' 14 (Sexten Center for Astrophysics (SCfA), 2019).

  63. Yuan, X. et al. Development of the multi-channel photometric survey telescope. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 11445 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 114457M (eds Marshall, H. K. et al.) (2020).

  64. Yaron, O. & Gal-Yam, A. WISeREP—an interactive supernova data repository. Publ. Astron. Soc. Pac. 124, 668 (2012).

    Article  ADS  Google Scholar 

  65. Ben-Ami, S. et al. The SED machine: a dedicated transient IFU spectrograph. In Ground-based and Airborne Instrumentation for Astronomy IV, vol. 8446 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (eds McLean, I. S. et al.) (2012).

  66. Rigault, M. et al. Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm. Astron. Astrophys. 627, A115 (2019).

    Article  CAS  Google Scholar 

  67. Kim, Y. L. et al. New modules for the SEDMachine to remove contaminations from cosmic rays and non-target light: byecr and contsep. Publ. Astron. Soc. Pac. 134, 024505 (2022).

    Article  ADS  Google Scholar 

  68. Oke, J. B. & Gunn, J. E. An efficient low resolution and moderate resolution spectrograph for the Hale telescope. Publ. Astron. Soc. Pac. 94, 586 (1982).

    Article  ADS  CAS  Google Scholar 

  69. Prochaska, J. et al. PypeIt: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).

    Article  ADS  Google Scholar 

  70. Prochaska, J. X. et al. pypeit/PypeIt: Release 1.0.0. Zenodo (2020).

  71. Fabricant, D. et al. Binospec: a wide-field imaging spectrograph for the MMT. Publ. Astron. Soc. Pac. 131, 075004 (2019).

    Article  ADS  Google Scholar 

  72. Kansky, J. et al. Binospec software system. Publ. Astron. Soc. Pac. 131, 075005 (2019).

    Article  ADS  Google Scholar 

  73. Simcoe, R. A. et al. FIRE: a facility class near-infrared Echelle spectrometer for the Magellan telescopes. Publ. Astron. Soc. Pac. 125, 270 (2013).

    Article  ADS  Google Scholar 

  74. Dressler, A. et al. IMACS: the Inamori-Magellan areal camera and spectrograph on Magellan-Baade. Publ. Astron. Soc. Pac. 123, 288 (2011).

    Article  ADS  Google Scholar 

  75. Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105 (2011).

    Article  Google Scholar 

  76. van Dokkum, P. G. Cosmic-ray rejection by Laplacian edge detection. Publ. Astron. Soc. Pac. 113, 1420–1427 (2001).

    Article  ADS  Google Scholar 

  77. Goldoni, P. et al. Data reduction software of the X-shooter spectrograph. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6269 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 62692K (eds McLean, I. S. & Iye, M.) (2006).

  78. Modigliani, A. et al. The X-shooter pipeline. In Observatory Operations: Strategies, Processes, and Systems III, vol. 7737 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 773728 (eds Silva, D. R. et al.) (2010).

  79. Freudling, W. et al. Automated data reduction workflows for astronomy. The ESO Reflex environment. Astron. Astrophys. 559, A96 (2013).

    Article  Google Scholar 

  80. Smette, A. et al. Molecfit: A general tool for telluric absorption correction. I. Method and application to ESO instruments. Astron. Astrophys. 576, A77 (2015).

    Article  Google Scholar 

  81. VanderPlas, J. T. & Ivezić, Ž. Periodograms for multiband astronomical time series. Astrophys. J. 812, 18 (2015).

    Article  ADS  Google Scholar 

  82. Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976).

    Article  ADS  Google Scholar 

  83. Scargle, J. D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982).

    Article  ADS  Google Scholar 

  84. VanderPlas, J. T. Understanding the Lomb–Scargle periodogram. Astrophys. J. Suppl. Ser. 236, 16 (2018).

    Article  ADS  Google Scholar 

  85. Lyman, J. D., Bersier, D. & James, P. A. Bolometric corrections for optical light curves of core-collapse supernovae. Mon. Not. R. Astron. Soc. 437, 3848–3862 (2014).

    Article  ADS  Google Scholar 

  86. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  87. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245 (1989).

    Article  ADS  CAS  Google Scholar 

  88. Sharon, A. & Kushnir, D. The γ-ray deposition histories of core-collapse supernovae. Mon. Not. R. Astron. Soc. 496, 4517–4545 (2020).

    Article  ADS  CAS  Google Scholar 

  89. Folatelli, G. et al. SN 2005bf: a possible transition event between type Ib/c supernovae and gamma-ray bursts. Astrophys. J. 641, 1039–1050 (2006).

    Article  ADS  CAS  Google Scholar 

  90. Taddia, F. et al. PTF11mnb: First analog of supernova 2005bf. Long-rising, double-peaked supernova Ic from a massive progenitor. Astron. Astrophys. 609, A106 (2018).

    Article  Google Scholar 

  91. Gutiérrez, C. P. et al. The double-peaked type Ic supernova 2019cad: another SN 2005bf-like object. Mon. Not. R. Astron. Soc. 504, 4907–4922 (2021).

    Article  ADS  Google Scholar 

  92. Gomez, S. et al. The luminous and double-peaked type Ic supernova 2019stc: evidence for multiple energy sources. Astrophys. J. 913, 143 (2021).

    Article  ADS  CAS  Google Scholar 

  93. Chugai, N. N. & Utrobin, V. P. Origin of post-maximum bump in luminous Type Ic supernova 2019stc. Mon. Not. R. Astron. Soc. 512, L71–L73 (2022).

    Article  ADS  Google Scholar 

  94. Gomez, S., Berger, E., Nicholl, M., Blanchard, P. K. & Hosseinzadeh, G. Luminous supernovae: unveiling a population between superluminous and normal core-collapse supernovae. Astrophys. J. 941, 107 (2022).

    Article  ADS  Google Scholar 

  95. Kuncarayakti, H. et al. The broad-lined Type-Ic supernova SN 2022xxf and its extraordinary two-humped light curves. Astron. Astrophys. 678, A209 (2023).

  96. Das, K. K. et al. Probing pre-supernova mass loss in double-peaked Type Ibc supernovae from the Zwicky Transient Facility. Preprint at https://doi.org/10.48550/arXiv.2306.04698 (2023).

  97. Piro, A. L. Using double-peaked supernova light curves to study extended material. Astrophys. J. Lett. 808, L51 (2015).

    Article  ADS  Google Scholar 

  98. Jin, H., Yoon, S.-C. & Blinnikov, S. The effect of circumstellar matter on the double-peaked type Ic supernovae and implications for LSQ14efd, iPTF15dtg, and SN 2020bvc. Astrophys. J. 910, 68 (2021).

    Article  ADS  CAS  Google Scholar 

  99. Orellana, M. & Bersten, M. C. Supernova double-peaked light curves from double-nickel distribution. Astron. Astrophys. 667, A92 (2022).

    Article  ADS  CAS  Google Scholar 

  100. Bersten, M. C., Tanaka, M., Tominaga, N., Benvenuto, O. G. & Nomoto, K. Early ultraviolet/optical emission of the type Ib SN 2008D. Astrophys. J. 767, 143 (2013).

    Article  ADS  Google Scholar 

  101. Walton, D. J., Roberts, T. P., Mateos, S. & Heard, V. 2XMM ultraluminous X-ray source candidates in nearby galaxies. Mon. Not. R. Astron. Soc. 416, 1844–1861 (2011).

    Article  ADS  Google Scholar 

  102. Israel, G. L. et al. An accreting pulsar with extreme properties drives an ultraluminous X-ray source in NGC 5907. Science 355, 817–819 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  103. Brightman, M. et al. Breaking the limit: super-Eddington accretion onto black holes and neutron stars. Bull. AAS 51, 352 (2019).

    Google Scholar 

  104. Grzegorzek, J. PSH Transient Classification Report for 2022-05-11. Transient Name Server Classification Report 2022-1261, 1 (2022).

  105. Cosentino, S. P. et al. ePESSTO+ Transient Classification Report for 2022-05-24. Transient Name Server Classification Report 2022-1409, 1 (2022).

  106. Drout, M. R. et al. The double-peaked SN 2013ge: a type Ib/c SN with an asymmetric mass ejection or an extended progenitor envelope. Astrophys. J. 821, 57 (2016).

    Article  ADS  Google Scholar 

  107. Hachinger, S. et al. How much H and He is ‘hidden’ in SNe Ib/c? - I. Low-mass objects. Mon. Not. R. Astron. Soc. 422, 70–88 (2012).

    Article  ADS  CAS  Google Scholar 

  108. Dessart, L., Yoon, S.-C., Aguilera-Dena, D. R. & Langer, N. Supernovae Ib and Ic from the explosion of helium stars. Astron. Astrophys. 642, A106 (2020).

    Article  CAS  Google Scholar 

  109. Williamson, M., Kerzendorf, W. & Modjaz, M. Modeling type Ic supernovae with TARDIS: hidden helium in SN 1994I? Astrophys. J. 908, 150 (2021).

    Article  ADS  CAS  Google Scholar 

  110. Tinyanont, S. et al. Keck Infrared Transient Survey I: survey description and data release 1. Preprint at https://doi.org/10.48550/arXiv.2309.07102 (2023).

  111. Dessart, L. Simulations of light curves and spectra for superluminous type Ic supernovae powered by magnetars. Astron. Astrophys. 621, A141 (2019).

    Article  ADS  CAS  Google Scholar 

  112. Omand, C. M. B. & Jerkstrand, A. Toward nebular spectral modeling of magnetar-powered supernovae. Astron. Astrophys. 673, A107 (2023).

    Article  ADS  CAS  Google Scholar 

  113. Budaj, J., Richards, M. T. & Miller, B. A study of synthetic and observed Hα spectra of TT hydrae. Astrophys. J. 623, 411–424 (2005).

    Article  ADS  CAS  Google Scholar 

  114. Miller, B., Budaj, J., Richards, M., Koubský, P. & Peters, G. J. Revealing the nature of algol disks through optical and UV spectroscopy, synthetic spectra, and tomography of TT hydrae. Astrophys. J. 656, 1075–1091 (2007).

    Article  ADS  CAS  Google Scholar 

  115. Atwood-Stone, C., Miller, B. P., Richards, M. T., Budaj, J. & Peters, G. J. Modeling the accretion structure of AU Mon. Astrophys. J. 760, 134 (2012).

    Article  ADS  Google Scholar 

  116. Patat, F., Chugai, N. & Mazzali, P. A. Late-time Hα emission from the hydrogen shell of SN 1993J. Astron. Astrophys. 299, 715 (1995).

    ADS  CAS  Google Scholar 

  117. Maeda, K. et al. The Unique Type Ib Supernova 2005bf at Nebular Phases: A Possible Birth Event of a Strongly Magnetized Neutron Star. Astrophys. J. 666, 1069–1082 (2007).

    Article  ADS  CAS  Google Scholar 

  118. Taubenberger, S. et al. The He-rich stripped-envelope core-collapse supernova 2008ax. Mon. Not. R. Astron. Soc. 413, 2140–2156 (2011).

    Article  ADS  CAS  Google Scholar 

  119. Jerkstrand, A. et al. Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh. Astron. Astrophys. 573, A12 (2015).

    Article  Google Scholar 

  120. Fang, Q. & Maeda, K. The origin of the Ha-like structure in nebular spectra of type IIb supernovae. Astrophys. J. 864, 47 (2018).

    Article  ADS  Google Scholar 

  121. Matheson, T. et al. Optical spectroscopy of supernova 1993J during Its first 2500 days. Astron. J. 120, 1487–1498 (2000).

    Article  ADS  Google Scholar 

  122. Matheson, T., Filippenko, A. V., Ho, L. C., Barth, A. J. & Leonard, D. C. Detailed analysis of early to late-time spectra of supernova 1993J. Astron. J. 120, 1499–1515 (2000).

    Article  ADS  CAS  Google Scholar 

  123. Dessart, L., Hillier, D. J., Sukhbold, T., Woosley, S. E. & Janka, H. T. Nebular phase properties of supernova Ibc from He-star explosions. Astron. Astrophys. 656, A61 (2021).

    Article  ADS  CAS  Google Scholar 

  124. Marietta, E., Burrows, A. & Fryxell, B. Type IA supernova explosions in binary systems: the impact on the secondary star and its consequences. Astrophys. J. Suppl. Ser. 128, 615–650 (2000).

    Article  ADS  CAS  Google Scholar 

  125. Liu, Z.-W. et al. The interaction of core-collapse supernova ejecta with a companion star. Astron. Astrophys. 584, A11 (2015).

    Article  ADS  Google Scholar 

  126. Dessart, L., Leonard, D. C. & Prieto, J. L. Spectral signatures of H-rich material stripped from a non-degenerate companion by a type Ia supernova. Astron. Astrophys. 638, A80 (2020).

    Article  ADS  CAS  Google Scholar 

  127. Kollmeier, J. A. et al. H α emission in the nebular spectrum of the type Ia supernova ASASSN-18tb. Mon. Not. R. Astron. Soc. 486, 3041–3046 (2019).

    Article  ADS  CAS  Google Scholar 

  128. Prieto, J. L. et al. Variable Hα emission in the nebular spectra of the low-luminosity type Ia SN2018cqj/ATLAS18qtd. Astrophys. J. 889, 100 (2020).

    Article  ADS  CAS  Google Scholar 

  129. Elias-Rosa, N. et al. Nebular Hα emission in type Ia supernova 2016jae. Astron. Astrophys. 652, A115 (2021).

    Article  CAS  Google Scholar 

  130. Yan, L. et al. Detection of broad Hα emission lines in the late-time spectra of a hydrogen-poor superluminous supernova. Astrophys. J. 814, 108 (2015).

    Article  ADS  Google Scholar 

  131. Moriya, T. J., Liu, Z.-W., Mackey, J., Chen, T.-W. & Langer, N. Revealing the binary origin of Type Ic superluminous supernovae through nebular hydrogen emission. Astron. Astrophys. 584, L5 (2015).

    Article  ADS  Google Scholar 

  132. Murray, C. D. & Correia, A. C. M. in Exoplanets (ed. Seager, S.) 15–23 (Univ. Arizona Press, 2010).

  133. Fruscione, A. et al. CIAO: Chandra’s data analysis system. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6270 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 62701V (eds Silva, D. R. & Doxsey, R. E.) (SPIE, 2006).

  134. Kalberla, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) survey of galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005).

    Article  ADS  CAS  Google Scholar 

  135. Güver, T. & Özel, F. The relation between optical extinction and hydrogen column density in the Galaxy. Mon. Not. R. Astron. Soc. 400, 2050–2053 (2009).

    Article  ADS  Google Scholar 

  136. Alp, D. et al. X-ray absorption in young core-collapse supernova remnants. Astrophys. J. 864, 175 (2018).

    Article  ADS  Google Scholar 

  137. Chandra, P., Chevalier, R. A., Chugai, N., Fransson, C. & Soderberg, A. M. X-ray and radio emission from type IIn supernova SN 2010jl. Astrophys. J. 810, 32 (2015).

    Article  ADS  Google Scholar 

  138. Immler, S. et al. Swift and Chandra detections of supernova 2006jc: evidence for interaction of the supernova shock with a circumstellar shell. Astrophys. J. Lett. 674, L85 (2008).

    Article  ADS  CAS  Google Scholar 

  139. Chandra, P. et al. Radio and X-ray observations of SN 2006jd: another strongly interacting type IIn supernova. Astrophys. J. 755, 110 (2012).

    Article  ADS  Google Scholar 

  140. Stritzinger, M. et al. Multi-wavelength observations of the enduring type IIn supernovae 2005ip and 2006jd. Astrophys. J. 756, 173 (2012).

    Article  ADS  Google Scholar 

  141. Harrison, F. A. et al. The Nuclear Spectroscopic Telescope Array (NuSTAR) High-energy X-ray mission. Astrophys. J. 770, 103 (2013).

    Article  ADS  Google Scholar 

  142. Wilson, W. E. et al. The Australia Telescope Compact Array Broad-band Backend: description and first results. Mon. Not. R. Astron. Soc. 416, 832–856 (2011).

    Article  ADS  Google Scholar 

  143. Sault, R. J., Teuben, P. J. & Wright, M. C. H. in Astronomical Data Analysis Software and Systems IV Vol. 77 (eds Shaw, R. A. et al.) 433–436 (1995).

  144. Chevalier, R. A. & Soker, N. Asymmetric envelope expansion of supernova 1987A. Astrophys. J. 341, 867–882 (1989).

    Article  ADS  Google Scholar 

  145. Langer, N. Presupernova evolution of massive single and binary stars. Annu. Rev. Astron. Astrophys. 50, 107–164 (2012).

    Article  ADS  CAS  Google Scholar 

  146. Gal-Yam, A. et al. A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 509, 471–474 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  147. Postnov, K. A. & Yungelson, L. R. The evolution of compact binary star systems. Living Rev. Relativ. 17, 3 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  148. Hirai, R., Podsiadlowski, P. & Yamada, S. Comprehensive study of ejecta-companion interaction for core-collapse supernovae in massive binaries. Astrophys. J. 864, 119 (2018).

    Article  ADS  Google Scholar 

  149. Ogata, M., Hirai, R. & Hijikawa, K. Observability of inflated companion stars after supernovae in massive binaries. Mon. Not. R. Astron. Soc. 505, 2485–2499 (2021).

    Article  ADS  Google Scholar 

  150. Dosopoulou, F. & Kalogera, V. Orbital evolution of mass-transferring eccentric binary systems. II. Secular evolution. Astrophys. J. 825, 71 (2016).

    Article  ADS  Google Scholar 

  151. Maund, J. R., Smartt, S. J., Kudritzki, R. P., Podsiadlowski, P. & Gilmore, G. F. The massive binary companion star to the progenitor of supernova 1993J. Nature 427, 129–131 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  152. Ryder, S. D. et al. Ultraviolet detection of the binary companion to the type IIb SN 2001ig. Astrophys. J. 856, 83 (2018).

    Article  ADS  Google Scholar 

  153. Maund, J. R., Pastorello, A., Mattila, S., Itagaki, K. & Boles, T. The possible detection of a binary companion to a type Ibn supernova progenitor. Astrophys. J. 833, 128 (2016).

    Article  ADS  Google Scholar 

  154. Sun, N.-C., Maund, J. R., Hirai, R., Crowther, P. A. & Podsiadlowski, P. Origins of type Ibn SNe 2006jc/2015G in interacting binaries and implications for pre-SN eruptions. Mon. Not. R. Astron. Soc. 491, 6000–6019 (2020).

    Article  ADS  CAS  Google Scholar 

  155. Folatelli, G. et al. A blue point source at the location of supernova 2011dh. Astrophys. J. Lett. 793, L22 (2014).

    Article  ADS  Google Scholar 

  156. Maund, J. R. The origin of the late-time luminosity of supernova 2011dh. Astrophys. J. 883, 86 (2019).

    Article  ADS  CAS  Google Scholar 

  157. Tauris, T. M. & Takens, R. J. Runaway velocities of stellar components originating from disrupted binaries via asymmetric supernova explosions. Astron. Astrophys. 330, 1047–1059 (1998).

    ADS  Google Scholar 

  158. Portegies Zwart, S. F. The characteristics of high-velocity O and B stars which are ejected from supernovae in binary systems. Astrophys. J. 544, 437–442 (2000).

    Article  ADS  Google Scholar 

  159. Kochanek, C. S., Auchettl, K. & Belczynski, K. Stellar binaries that survive supernovae. Mon. Not. R. Astron. Soc. 485, 5394–5410 (2019).

    Article  ADS  CAS  Google Scholar 

  160. Kochanek, C. S. Supernovae producing unbound binaries and triples. Mon. Not. R. Astron. Soc. 507, 5832–5846 (2021).

    Article  ADS  CAS  Google Scholar 

  161. Hameury, J. M. A review of the disc instability model for dwarf novae, soft X-ray transients and related objects. Adv. Space Res. 66, 1004–1024 (2020).

    Article  ADS  Google Scholar 

  162. Atwood, W. B. et al. The large area telescope on the Fermi Gamma-Ray Space Telescope mission. Astrophys. J. 697, 1071–1102 (2009).

    Article  ADS  CAS  Google Scholar 

  163. Abdollahi, S. et al. Incremental Fermi Large Area Telescope fourth source catalog. Astrophys. J. Suppl. Ser. 260, 53 (2022).

    Article  ADS  Google Scholar 

  164. Ofek, E. O. & Zackay, B. Optimal matched filter in the low-number count Poisson noise regime and implications for X-ray source detection. Astronomical Journal 155, 169 (2018).

    Article  ADS  Google Scholar 

  165. Dullo, B. T., Bouquin, A. Y. K., Gil de Paz, A., Knapen, J. H. & Gorgas, J. The Black Hole mass–color relations for early- and late-type galaxies: red and blue sequences. Astrophys. J. 898, 83 (2020).

    Article  ADS  CAS  Google Scholar 

  166. Itoh, R. et al. Blazar Radio and Optical Survey (BROS): A catalog of blazar candidates showing flat radio spectrum and their optical identification in Pan-STARRS1 surveys. Astrophys. J. 901, 3 (2020).

    Article  ADS  CAS  Google Scholar 

  167. Liodakis, I., Romani, R. W., Filippenko, A. V., Kocevski, D. & Zheng, W. Probing blazar emission processes with optical/gamma-ray flare correlations. Astrophys. J. 880, 32 (2019).

    Article  ADS  CAS  Google Scholar 

  168. Matz, S. M. et al. Gamma-ray line emission from SN1987A. Nature 331, 416–418 (1988).

    Article  ADS  Google Scholar 

  169. Teegarden, B. J. et al. Resolution of the 1,238-keV γ-ray line from supernova 1987A. Nature 339, 122–123 (1989).

    Article  ADS  Google Scholar 

  170. Churazov, E. et al. Gamma rays from type Ia supernova SN 2014J. Astrophys. J. 812, 62 (2015).

    Article  ADS  Google Scholar 

  171. Ackermann, M. et al. Search for early gamma-ray production in supernovae located in a dense circumstellar medium with the Fermi LAT. Astrophys. J. 807, 169 (2015).

    Article  ADS  Google Scholar 

  172. Renault-Tinacci, N., Kotera, K., Neronov, A. & Ando, S. Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. Astron. Astrophys. 611, A45 (2018).

    Article  ADS  Google Scholar 

  173. Yuan, Q. et al. Fermi Large Area Telescope detection of gamma-ray emission from the direction of supernova iPTF14hls. Astrophys. J. Lett. 854, L18 (2018).

    Article  ADS  Google Scholar 

  174. Prokhorov, D. A., Moraghan, A. & Vink, J. Search for gamma rays from SNe with a variable-size sliding-time-window analysis of the Fermi-LAT data. Mon. Not. R. Astron. Soc. 505, 1413–1421 (2021).

    Article  ADS  Google Scholar 

  175. Xi, S.-Q. et al. A serendipitous discovery of GeV gamma-ray emission from supernova 2004dj in a survey of nearby star-forming galaxies with Fermi-LAT. Astrophys. J. Lett. 896, L33 (2020).

    Article  ADS  CAS  Google Scholar 

  176. Fermi LAT Collaboration et al. Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3. Science 326, 1512 (2009).

    Article  ADS  Google Scholar 

  177. Piano, G. et al. The AGILE monitoring of Cygnus X-3: transient gamma-ray emission and spectral constraints. Astron. Astrophys. 545, A110 (2012).

    Article  Google Scholar 

  178. Modjaz, M. et al. Optical spectra of 73 stripped-envelope core-collapse supernovae. Astron. J. 147, 99 (2014).

    Article  ADS  Google Scholar 

  179. Hunter, D. J. et al. Extensive optical and near-infrared observations of the nearby, narrow-lined type Ic SN 2007gr: days 5 to 415. Astron. Astrophys. 508, 371–389 (2009).

    Article  ADS  CAS  Google Scholar 

  180. Taubenberger, S. et al. Nebular emission-line profiles of Type Ib/c supernovae - probing the ejecta asphericity. Mon. Not. R. Astron. Soc. 397, 677–694 (2009).

    Article  ADS  CAS  Google Scholar 

  181. Jerkstrand, A. et al. Long-duration superluminous supernovae at late times. Astrophys. J. 835, 13 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Cenko, Y. Levin, E. Pian, S. Dong, D. Lai, O. Yaron, J. Morag, Y. S. Rimalt and T. Shenar for the discussions. We thank D. J. Thompson for his comments. P.C. and A.G.-Y. thank Y. Beletsky for his assistance with Magellan telescope remote observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Space Science Data Center (SSDC) and the California Institute of Technology (Caltech). SED Machine is based on the work supported by the National Science Foundation under grant no. 1106171. This study is based on observations obtained with the 48-inch Samuel Oschin Telescope and the 60-inch Telescope at the Palomar Observatory as part of the Zwicky Transient Facility (ZTF) project. ZTF is supported by the National Science Foundation under grant no. AST-2034437 and a collaboration that includes Caltech, IPAC, the Weizmann Institute of Science, the Oskar Klein Center at Stockholm University, the University of Maryland, Deutsches Elektronen-Synchrotron and Humboldt University, the TANGO Consortium of Taiwan, the University of Wisconsin at Milwaukee, Trinity College Dublin, Lawrence Livermore National Laboratories, IN2P3, University of Warwick, Ruhr University Bochum and Northwestern University. Operations were conducted by COO, IPAC and the University of Wisconsin. The Gordon and Betty Moore Foundation, through both the Data-Driven Investigator Program and a dedicated grant, provided funding for SkyPortal. This work has used data from the ATLAS project. The ATLAS project is primarily funded to search for near-earth asteroids through NASA grant nos NN12AR55G, 80NSSC18K0284 and 80NSSC18K1575; by-products of the NEO search include images and catalogues from the survey area. This work was partially funded by the Kepler/K2 grant J1944/80NSSC19K0112 and HST GO-15889 and STFC grants ST/T000198/1 and ST/S006109/1. The ATLAS science products have been made possible through the contributions of the University of Hawaii Institute for Astronomy, the Queen’s University Belfast, the Space Telescope Science Institute, the South African Astronomical Observatory and the Millennium Institute of Astrophysics (MAS), Chile. This study is based on the observations made with the NOT, owned in collaboration with the University of Turku and Aarhus University and operated jointly by Aarhus University, the University of Turku and the University of Oslo, representing Denmark, Finland and Norway, respectively, the University of Iceland and Stockholm University at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. One of the spectra from NOT was obtained as part of an NBI school in which M. Killi, N. Allen, K. Gould and D. Zhou participated under the leadership of J. Fynbo. This work was supported by the research project grant Understanding the Dynamic Universe funded by the Knut and Alice Wallenberg Foundation under Dnr KAW 2018.0067. The study is based on the observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 110.25A6. The access for MMT Observatory for part of the MMT/Binospec data was supported by Northwestern University and the Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA). Mephisto is developed at and operated by the South-Western Institute for Astronomy Research of Yunnan University (SWIFAR-YNU), funded by the Yunnan University Development Plan for World-Class University and Yunnan University Development Plan for World-Class Astronomy Discipline. The Australia Telescope Compact Array is part of the ATNF, which is funded by the Australian government for the operation as a national facility managed by the CSIRO. We acknowledge the Gomeroi people as the Traditional Owners of the Observatory site. The Cosmic Dawn Center (DAWN) is funded by the Danish National Research Foundation under grant no. 140. S. Schulze acknowledges support from the G.R.E.A.T. research environment, funded by Vetenskapsrådet, the Swedish Research Council, project no. 2016-06012. B.Z. is supported by a research grant from the Willner Family Leadership Institute for the Weizmann Institute of Science, a research grant from the Center for New Scientists at the Weizmann Institute of Science and a research grant from the Ruth and Herman Albert Scholarship Program for New Scientists. A.H. acknowledges the support from the I-Core Program of the Planning and Budgeting Committee and the Israel Science Foundation (ISF) and support from the ISF grant no. 647/18. This research was supported by grant no. 2018154 from the United States–Israel Binational Science Foundation (BSF). A.H. is especially grateful to the Sir Zelman Cowen Academic Initiatives for their funding and support. D.L., Xiangkun Liu, Y.F. and Xiaowei Liu acknowledge the support from special grants to the Yunnan Technology Leading Talents and Provincial Innovation Team. D.L., Xiangkun Liu, Y.F. and Xiaowei Liu also acknowledge supports from the Science and Technology Champion Project (202005AB160002) and from two team projects—the Innovation Team (202105AE160021) and the Top Team (202305AT350002)—all funded by the Yunnan Revitalization Talent Support Program. J.P.U.F. is supported by the Independent Research Fund Denmark (DFF-4090-00079) and thanks the Carlsberg Foundation for support.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the paper and contributed to the interpretation and/or data acquisition. P.C. led the studies. P.C. discovered the periodicity and the γ-ray detection, organized the follow-up observations, conducted X-ray and most optical data acquisition, conducted most of the data reduction, performed the data analysis and wrote most of the paper, including creating all the figures. A.G.-Y. contributed to the follow-up data (including observations performed with MMT/BINOSPEC, Magellan/FIRE, Magellan/FIRE, VLT/X-shooter, NuSTAR, Chandra and ATCA) and to the interpretation, wrote the paper and thoroughly reviewed it. J.S. initiated the study, obtained the spectra with SEDM and NOT, helped in developing the ideas in the paper, wrote the paper and thoroughly reviewed it. S.S. contributed to the follow-up observations with NOT and reduced the NOT spectra. R.S.P. performed the follow-up observations with the 0.8-m RC32 telescope at Post Observatory. C.L. contributed to one MMT/Binospec spectrum, reduced the Magellan/FIRE echelle spectra and contributed to the interpretation. E.O.O. contributed to the follow-up observations with NuSTAR. B.K., D.K., E.O.O., E.W. and B.Z. contributed to the interpretation and especially suggested the analysis of Fermi-LAT data. D.L. performed the Mephisto photometry. Xiangkun Liu organized the Mephisto observations. A.H. and K.R. performed the ATCA radio observation and data reduction. K.K.D., Y.Y., M.M.K. and S.R.K. contributed to the P200/DBSP spectra. C.F. contributed to the SEDM photometry. A.A.M. contributed to one MMT/BINOSPEC spectrum. S.Y. contributed to the analysis of light curves with the nickel decay model. J.P.U.F. obtained a spectrum from the NOT. S.R.K., A.J.D., J.D.N., E.C.B., S.L.G., A.W., T.J.d.L., R.L.R., G.H. and R.D. are the ZTF builders. D.L., Xiaowei Liu, Xiangkun Liu and Y.F. contributed to the observation and reduction of Mephisto data. I.I., A.S., N.L.S., P.A.M. and L.Y. contributed to the interpretation. Y.-J.Q. contributed to the observation of DBSP spectra.

Corresponding author

Correspondence to Ping Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Naturethanks Ferinando Patat and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 SN 2022jli and the host galaxy NGC 157.

The background image shows the three-color (Y, H, K bands) image of NGC 157 taken before the supernova explosion with the HAWK-I instrument on ESO’s Very Large Telescope (VLT) at the Paranal Observatory in Chile (Credit: ESO). The red plus symbol in the figure indicates the position of SN 2022jli. Inset panels: a, zoom-in view around SN 2022jli showing the nearby environment in NIR; b, zoom-in view around SN 2022jli on an r-band image taken with Magellan/IMACS on 2022 December 15; c, Na I absorption lines from the host galaxy; d, the narrow diffuse interstellar band absorption (DIB6283) from the host galaxy. a,b, Share the same field of view size. c,d, The red spectrum shows the averaged spectrum of three X-Shooter spectra and one IMACS spectrum, whereas the individual spectra are shown in grey in the background.

Extended Data Fig. 2 Spectral evolution and comparison of SN 2022jli.

a, Photospheric spectra of SN 2022jli. The +6d spectrum and the +19d spectrum are shown in black and red, respectively. The identified absorption lines of Fe II, O I, and Ca II are indicated with the arrows. A blue-shifted velocity of 8, 200 km s−1 has been applied to all the lines. b, The +19d spectrum of SN 2022jli compared with photospheric spectra of other SNe. The comparison objects include: normal SNe Ic (SN 2004gk178, SN 2007gr179), SN Ib/c (SN 2013ge106), “Hypernovae” (SN 1997dq 12,13,180), Hydrogen-poor SLSNe (SN 2015bn5,181), and other long-lasting peculiar SESNe (SN 2012au14, iPTF15dtg15). c, Late-time spectra of SN 2022jli and other comparison SNe. The comparison objects are the same as in b except that we have added another Hydrogen-poor SLSN SN 2007bi11. The vertical dashed lines mark the wavelength of Hα and Hβ.

Extended Data Fig. 3 Periodicity analysis of light curves in the individual bands.

Left: the Lomb-Scargle power spectrum of the light curve (blue) and the observation window function (yellow). The zoom-in panel shows the region of interest around the true periodic signal. The horizontal lines indicate the false alarm probability (FAP) levels of 10−3, 10−6, and 10−9 from bottom to top. Right: the phase-folded subtracted and normalized light curve. The period adopted for the folding corresponds to the peak power in the zoom-in panel on the left.

Extended Data Fig. 4 Optical and NIR spectra of SN 2022jli around +210 days after discovery (optical spectrum taken with NOT/ALFOSC on 2022 November 25 and NIR spectrum taken with Magellan/FIRE on 2022 December 15).

The NIR spectrum has been scaled to match the flux of the optical spectrum in the overlapping region. The prominent features and the corresponding ions (or molecules) that likely contributed to the emission lines are marked. The spectrum in blue shows the mock spectrum of Fe II, Fe III and Ni II emission, and the vertical lines indicate emission from individual transitions which give relatively strong emission. The absolute strength of the mock spectrum is arbitrary, and the relative strength between different transitions for the same ion was calculated for a temperature of 104 K, and an electron density of 107cm−3.

Extended Data Fig. 5 Spectral evolution of SN 2022jli before and during the fast decline phase of the light curve.

The top left panel shows the bolometric light curve, and the top right panel shows the zoom-in view of the fast decline phase of the light curve. The second panel shows the six epochs of spectra as indicated in the top right panel. The bottom three panels show the zoom-in view of the spectra within different wavelength ranges. All spectra in the bottom three panels have been scaled to have the same integrated luminosity between 3800 to 9000 Å as the BINOSPEC spectrum taken on 12 January 2022.

Extended Data Fig. 6 Pseudo-bolometric light curve of SN 2022jli.

a, The points show the pseudo-bolometric light curve from 3750 Å to 25000 Å. These data points share the same colours with the other panels to indicate different phases. The black shows the gradual decline phase during which the constant relative undulation is detected. The last bump before the fast-declining phase is shown in blue, and the fast-declining phase is shown in cyan. The magenta line shows the radioactive decay model with 0.15 M56Ni. b, Zoom-in view of the accretion-powered pseudo-bolometric light curve, \({L}_{accretion}={L}_{UVOIR}-{L}_{{}^{56}Ni}\), before and during the fast-declining phase. The black solid line shows the linear fit to data between 200 and 260 days after JD = 2,459,700. The red solid line shows the best-fit undulation model to the data, while the red dashed line shows the extrapolation of the undulation model if the SN follows the previous undulations. The vertical green lines mark the 12.4-day periods with the left three lines at the minima of the undulation profiles. c, The undulation profiles of the gradual-declining phase and the last bump. d, The relative undulation of the accretion-powered pseudo-bolometric light curve. The red line shows the empirical undulation model adopting the same empirical undulation profile as in c.

Extended Data Fig. 7 Detection and light curve of the new γ-ray source.

The top panels show the Test Statistic (TS) map of the region of interest in the direction of SN 2022jli. a, The result of data observed from 1 May 2022 to 1 March 2023 in the broad energy band (100 MeV – 300 GeV). b, The result of data observed from 1 November 2022 to 1 January 2023 in the narrow energy band (1 – 3 GeV). The sources from the 4FGL-DR3 catalogue shown with blue plus symbols have been modelled and subtracted from the map. The bottom panels show the γ-ray light curves of the detected source at the position of SN 2022jli with a bin size of 2 months. c, The energy range of 100 MeV to 300 GeV. d, The energy range of 1 GeV to 3 GeV. The black points show the measured energy flux from the likelihood modelling with the Fermi-LAT analysis tool. The blue lines give the upper limit of energy flux within a 95% confidence interval. The red histograms show the Test Statistics values on the right axis. The horizontal dashed red line marks TS=9. The vertical yellow lines mark the discovery time of SN 2022jli.

Extended Data Fig. 8 Localization and potential periodicity of the new γ-ray source.

a, The background mosaic grey pixels show the count map of 1 – 3 GeV photons detected between 1 November 2022 and 1 January 2023. The pixel size is 0.125° × 0.125°. The yellow plus symbol shows the best-localized position of the new γ-ray source, and the surrounding yellow contours show the corresponding 68%, 95%, and 99% confidence area. SN 2022jli, the red plus symbol, is within the 68% uncertainty region of the detected γ-ray source. The blazar candidate NVSS J003456-082820 is shown with the blue plus symbol and is within the 95% uncertainty region of the new γ-ray source. In the central 1.625° × 1.625° field, there is one detected γ-ray source from the LAT 12-year Source Catalog (4FGL-DR3), 4FGL J0035.8-0837. The black circle has a radius of 0.4° corresponding roughly to the 50% containment radius of the averaged PSF over the energy range between 1 GeV and 3 GeV. b, The distribution of 1 – 3 GeV photons of the new γ-ray source. The top panel shows the photon energy and detection time. The bottom panel shows the distribution after folding the light curve with a period of 12.4 days. The reference time (phase=0) corresponds to the minimum of the optical undulation profile. Most of the γ-ray photons come from the rising phase of the optical bump. The 11 photons are within the half-containment radius shown in a. c, The cumulative distribution of the maximum separation between any two photons that would be achieved by drawing N photons randomly distributed in a time range of 120 days.

Extended Data Fig. 9 Light curve of SN 2022jli compared with those of other supernovae.

a, Comparison with Type Ic supernovae dominantly powered by radioactive decay showing clear exponential decay tails. All the comparison supernovae have been shifted to have a peak at 14th magnitude. The inset panel shows a zoom-in view around the peak light. b, Comparison with the long-lasting SN 2012au (SN Ib), and other supernovae with double-peaked light curves.

Extended Data Fig. 10 Evolution of the accretion-powered Hα emission.

a, The line luminosity of the Hα emission compared with the pseudo-bolometric luminosity. b, The velocity of the Hα emission. The data points share the same colour as in a, indicating the phase of the corresponding spectrum. The lines show the orbital velocity model with specific orbital parameters in the legend. An edge-on view (inclination angle i = 90 degrees) is adopted for all models. The orbital parameters include compact remnant mass mc, companion star mass m2, and orbital eccentricity e. The errorbars are 1σ confidence intervals.

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–16 and Supplementary Tables 1 and 2.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Gal-Yam, A., Sollerman, J. et al. A 12.4-day periodicity in a close binary system after a supernova. Nature 625, 253–258 (2024). https://doi.org/10.1038/s41586-023-06787-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06787-x

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing