Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ionized gas extends over 40 kpc in an odd radio circle host galaxy

Abstract

A new class of extragalactic astronomical sources discovered in 2021, named odd radio circles (ORCs)1, are large rings of faint, diffuse radio continuum emission spanning approximately 1 arcminute on the sky. Galaxies at the centres of several ORCs have photometric redshifts of z 0.3–0.6, implying physical scales of several 100 kpc in diameter for the radio emission, the origin of which is unknown. Here we report spectroscopic data on an ORC including strong [O ii] emission tracing ionized gas in the central galaxy of ORC4 at z = 0.4512. The physical extent of the [O ii] emission is approximately 40 kpc in diameter, larger than expected for a typical early-type galaxy2 but an order of magnitude smaller than the large-scale radio continuum emission. We detect an approximately 200 km s−1 velocity gradient across the [O ii] nebula, as well as a high velocity dispersion of approximately 180 km s−1. The [O ii] equivalent width (approximately 50 Å) is extremely high for a quiescent galaxy. The morphology, kinematics and strength of the [O ii] emission are consistent with the infall of shock ionized gas near the galaxy, following a larger, outward-moving shock. Both the extended optical and radio emission, although observed on very different scales, may therefore result from the same dramatic event.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical stellar continuum and [O ii] emission of ORC4.
Fig. 2: Radial surface brightness and EW profile of the [O ii] emission.
Fig. 3: Kinematics of the [O ii] emission.
Fig. 4: Simulation of starburst-driven wind.

Similar content being viewed by others

Data availability

The raw data generated at the Keck Observatory are available from the Keck Observatory Archive (koa.ipac.caltech.edu) following the standard 18-month proprietary period after the date of observation. The reduced KCWI spectral data cube and the results of the [O ii] emission-line fits are available on Zenodo at https://doi.org/10.5281/zenodo.8377942.

Code availability

The code used is available upon request from the first author.

References

  1. Norris, R. P. et al. Unexpected circular radio objects at high galactic latitude. Publ. Astron. Soc. Aust. 38, e003 (2021).

    Article  ADS  Google Scholar 

  2. Pandya, V. et al. The MASSIVE Survey. VI. The spatial distribution and kinematics of warm ionized gas in the most massive local early-type galaxies. Astrophys. J. 837, 40 (2017).

    Article  ADS  Google Scholar 

  3. Norris, R. P. et al. The Evolutionary Map of the Universe pilot survey. Publ. Astron. Soc. Aust. 38, e046 (2021).

    Article  ADS  Google Scholar 

  4. Johnston, S. et al. Science with the Australian Square Kilometre Array Pathfinder. Publ. Astron. Soc. Aust. 24, 174 (2007).

    Article  ADS  Google Scholar 

  5. McConnell, D. et al. The Australian Square Kilometre Array Pathfinder: performance of the Boolardy Engineering Test Array. Publ. Astron. Soc. Aust. 33, e042 (2016).

    Article  ADS  Google Scholar 

  6. Ananthakrishnan, S. The Giant Meterwave Radio Telescope. J. Astrophys. Astron. Suppl. 16, 427 (1995).

    Google Scholar 

  7. Koribalski, B. S. et al. Discovery of a new extragalactic circular radio source with ASKAP: ORC J0102-2450. Mon. Not. R. Astron. Soc. 505, L11–L15 (2021).

    Article  ADS  Google Scholar 

  8. Koribalski, B. S. et al. MeerKAT discovery of a double radio relic and odd radio circle. Preprint at arXiv.org/abs/2304.11784 (2023).

  9. Norris, R. P. et al. MeerKAT uncovers the physics of an odd radio circle. Mon. Not. R. Astron. Soc. 513, 1300–1316 (2022).

    Article  ADS  CAS  Google Scholar 

  10. Morrissey, P. et al. The Keck Cosmic Web Imager Integral Field Spectrograph. Astrophys. J. 864, 93 (2018).

    Article  ADS  Google Scholar 

  11. Zhu, G., Moustakas, J. & Blanton, M. R. The [O ii] λ3727 luminosity function at z ~ 1. Astrophys. J. 701, 86–93 (2009).

    Article  ADS  CAS  Google Scholar 

  12. Yan, R. et al. On the origin of [O ii] emission in red-sequence and poststarburst galaxies. Astrophys. J. 648, 281–298 (2006).

    Article  ADS  CAS  Google Scholar 

  13. Franzen, T. M. O. et al. The GLEAM 200-MHz local radio luminosity function for AGN and star-forming galaxies. Publ. Astron. Soc. Aust. 38, e041 (2021).

    Article  ADS  Google Scholar 

  14. Yan, R. & Blanton, M. R. The Nature of LINER-like emission in red galaxies. Astrophys. J. 747, 61 (2012).

    Article  ADS  Google Scholar 

  15. Faucher-Giguère, C.-A. & Quataert, E. The physics of galactic winds driven by active galactic nuclei. Mon. Not. R. Astron. Soc. 425, 605–622 (2012).

    Article  ADS  Google Scholar 

  16. King, A. & Pounds, K. Powerful outflows and feedback from active galactic nuclei. Ann. Rev. Astron. Astrophys. 53, 115–154 (2015).

    Article  ADS  CAS  Google Scholar 

  17. Thompson, T. A., Quataert, E., Zhang, D. & Weinberg, D. H. An origin for multiphase gas in galactic winds and haloes. Mon. Not. R. Astron. Soc. 455, 1830–1844 (2016).

    Article  ADS  CAS  Google Scholar 

  18. Lochhaas, C., Thompson, T. A., Quataert, E. & Weinberg, D. H. Fast winds drive slow shells: a model for the circumgalactic medium as galactic wind-driven bubbles. Mon. Not. R. Astron. Soc. 481, 1873–1896 (2018).

    Article  ADS  CAS  Google Scholar 

  19. Dolag, K., Böss, L. M., Koribalski, B. S., Steinwandel, U. P. & Valentini, M. Insights on the origin of odd radio circles from cosmological simulations. Astrophys. J. 945, 74 (2023).

    Article  ADS  Google Scholar 

  20. Allen, M. G., Groves, B. A., Dopita, M. A., Sutherland, R. S. & Kewley, L. J. The MAPPINGS III Library of Fast Radiative Shock Models. Astrophys. J. Suppl. 178, 20–55 (2008).

    Article  ADS  CAS  Google Scholar 

  21. Gronke, M. & Oh, S. P. How cold gas continuously entrains mass and momentum from a hot wind. Mon. Not. R. Astron. Soc. 492, 1970–1990 (2020).

    Article  ADS  CAS  Google Scholar 

  22. Fielding, D. B. & Bryan, G. L. The structure of multiphase galactic winds. Astrophys. J. 924, 82 (2022).

    Article  ADS  Google Scholar 

  23. Simons, R. C. et al. Figuring out gas & galaxies in Enzo (FOGGIE). IV. The stochasticity of ram pressure stripping in galactic halos. Astrophys. J. 905, 167 (2020).

    Article  ADS  Google Scholar 

  24. Tremonti, C. A., Moustakas, J. & Diamond-Stanic, A. M. The discovery of 1000 km s−1 outflows in massive poststarburst galaxies at z ~ 0.6. Astrophys. J. 663, L77–L80 (2007).

    Article  ADS  CAS  Google Scholar 

  25. Sell, P. H. et al. Massive compact galaxies with high-velocity outflows: morphological analysis and constraints on AGN activity. Mon. Not. R. Astron. Soc. 441, 3417–3443 (2014).

    Article  ADS  Google Scholar 

  26. Rupke, D. S. N. et al. The ionization and dynamics of the Makani galactic wind. Astrophys. J. 947, 33 (2023).

    Article  ADS  Google Scholar 

  27. Perrotta, S. et al. Kinematics, structure, and mass outflow rates of extreme starburst galactic outflows. Astrophys. J. 949, 9 (2023).

    Article  ADS  Google Scholar 

  28. Whalen, K. E. et al. The space density of intermediate-redshift, extremely compact, massive starburst galaxies. Astron. J. 164, 222 (2022).

    Article  ADS  Google Scholar 

  29. Rupke, D. S. N. et al. A 100-kiloparsec wind feeding the circumgalactic medium of a massive compact galaxy. Nature 574, 643–646 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Diamond-Stanic, A. M. et al. Compact starburst galaxies with fast outflows: central escape velocities and stellar mass surface densities from multiband Hubble Space Telescope imaging. Astrophys. J. 912, 11 (2021).

    Article  ADS  CAS  Google Scholar 

  31. Dey, A. et al. Overview of the DESI legacy imaging surveys. Astron. J. 157, 168 (2019).

    Article  ADS  CAS  Google Scholar 

  32. Rupke, D. S. N. IFSRED: data reduction for integral field spectrographs. Astrophysics Source Code Library ui.adsabs.harvard.edu/abs/2014ascl.soft09004R/abstract (2014).

  33. Planck Collaborationet al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  34. Chisholm, J., Prochaska, J. X., Schaerer, D., Gazagnes, S. & Henry, A. Optically thin spatially resolved Mg ii emission maps the escape of ionizing photons. Mon. Not. R. Astron. Soc. 498, 2554–2574 (2020).

    Article  ADS  CAS  Google Scholar 

  35. Green, A. W. et al. DYNAMO – I. A sample of Hα-luminous galaxies with resolved kinematics. Mon. Not. R. Astron. Soc. 437, 1070–1095 (2014).

    Article  ADS  CAS  Google Scholar 

  36. Norris, R. P., Crawford, E. & Macgregor, P. Odd radio circles and their environment. Galaxies 9, 83 (2021).

    Article  ADS  Google Scholar 

  37. Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar population inference with Prospector. Astrophys. J. Suppl. 254, 22 (2021).

    Article  ADS  CAS  Google Scholar 

  38. Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486 (2009).

    Article  ADS  Google Scholar 

  39. Aihara, H. et al. The eighth data release of the Sloan Digital Sky Survey: first data from SDSS-III. Astrophys. J. Suppl. 193, 29 (2011).

    Article  ADS  Google Scholar 

  40. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    Article  ADS  Google Scholar 

  41. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231 (2001).

    Article  ADS  Google Scholar 

  42. Ma, X. et al. The origin and evolution of the galaxy mass–metallicity relation. Mon. Not. R. Astron. Soc. 456, 2140 (2016).

    Article  ADS  CAS  Google Scholar 

  43. Cheung, E. et al. Suppressing star formation in quiescent galaxies with supermassive black hole winds. Nature 533, 504 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Roy, N. et al. Evidence of wind signatures in the gas velocity profiles of red geysers. Astrophys. J. 913, 33 (2021).

    Article  ADS  CAS  Google Scholar 

  45. Roy, N. et al. Detecting radio AGN signatures in red geysers. Astrophys. J. 869, 117 (2018).

    Article  ADS  CAS  Google Scholar 

  46. Blandford, R., Meier, D. & Readhead, A. Relativistic jets from active galactic nuclei. Ann. Rev. Astron. Astrophys. 57, 467–509 (2019).

    Article  ADS  CAS  Google Scholar 

  47. McDonald, M., Veilleux, S., Rupke, D. S. N. & Mushotzky, R. On the origin of the extended Hα filaments in cooling flow clusters. Astrophys. J. 721, 1262–1283 (2010).

    Article  ADS  CAS  Google Scholar 

  48. Girelli, G. et al. The stellar-to-halo mass relation over the past 12 Gyr. I. Standard ΛCDM model. Astron. Astrophys. 634, A135 (2020).

    Article  CAS  Google Scholar 

  49. Best, P. N. & Heckman, T. M. On the fundamental dichotomy in the local radio-AGN population: accretion, evolution and host galaxy properties. Mon. Not. R. Astron. Soc. 421, 1569 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. Brighenti for useful feedback on an earlier draft of the paper, and we thank R. Norris and H. Intema for sharing the Giant Meterwave Radio Telescope discovery image of ORC4. A.L.C. acknowledges support from the Ingrid and Joseph W. Hibben chair at UC San Diego. C.L. thanks C. Cimino IV for computing resources and assistance. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the financial support of the W. M. Keck Foundation. We wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

Author information

Authors and Affiliations

Authors

Contributions

D.S.N.R. and A.L.C. conceived the observations, following C.A.T.’s suggestion that ORCs may resemble the galaxies that we have been studying. A.L.C. obtained the observing time. S.P. performed the KCWI observations and led the data reduction. A.L.C. performed all the data analysis, with input from D.S.N.R. C.L. ran the starburst-wind model simulation and K.W. performed the SED fitting. A.L.C. wrote the manuscript, with input from all coauthors. The figures were created by S.P., A.L.C., K.W., C.L. and R.H.

Corresponding author

Correspondence to Alison L. Coil.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Spatially integrated spectrum of the gas nebula and host galaxy stellar continuum emission in ORC4.

a, Strong [O II] 3726, 3729 Å and weak Mg II 2796, 2803 Å and [Ne III] 3869 Å emission are observed in a spatially integrated spectrum of ORC4 (spanning the inner 26x26 kpc), at wavelengths that correspond to z = 0.4512; weak stellar continuum is also detected. The solid black line shows the observed spectrum, the pink dotted line is the 1σ error spectrum, and the orange dashed vertical lines indicate the observed wavelengths of Mg II, [O II], and [Ne III] at the spectroscopic redshift of the source. b, Gaussian fits to the Mg II and [O II] emission doublets and the [Ne III] singlet in the spatially-integrated spectrum. Blue and cyan lines show fits to the individual emission lines in each doublet.

Extended Data Fig. 2 Spectral energy distribution (SED) fit to optical SDSS and near infrared WISE photometry of ORC4.

a, The observed photometry of ORC4 is shown as green circles with 1σ error bars, while orange circles show the photometry implied from the best fit stellar population model, including an AGN contribution, which is shown in blue. Flux values are given in mJy and observed frame wavelengths in μm. b, The derived distributions from the SED fit for the stellar mass, stellar age, star formation history parameters, and AGN contribution for ORC4, as well as the covariance between the parameters.

Extended Data Fig. 3 Comparison of ORC4 radio continuum and [O II] line luminosity to radio AGN.

The 1.4 GHz radio continuum luminosity and [O II] emission line luminosity of ORC4, shown with a red circle, compared to the radio-loud AGN sample of ref. 49, shown with grey points. The [O II] luminosity of ORC4 is two orders of magnitude higher than the median value for an AGN with the same 1.4 GHz radio continuum luminosity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coil, A.L., Perrotta, S., Rupke, D.S.N. et al. Ionized gas extends over 40 kpc in an odd radio circle host galaxy. Nature 625, 459–462 (2024). https://doi.org/10.1038/s41586-023-06752-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06752-8

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing