Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike

Abstract

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant, BA.2.86, has emerged and spread to numerous countries worldwide, raising alarm because its spike protein contains 34 additional mutations compared with its BA.2 predecessor1. We examined its antigenicity using human sera and monoclonal antibodies (mAbs). Reassuringly, BA.2.86 was no more resistant to human sera than the currently dominant XBB.1.5 and EG.5.1, indicating that the new subvariant would not have a growth advantage in this regard. Importantly, sera from people who had XBB breakthrough infection exhibited robust neutralizing activity against all viruses tested, suggesting that upcoming XBB.1.5 monovalent vaccines could confer added protection. Although BA.2.86 showed greater resistance to mAbs to subdomain 1 (SD1) and receptor-binding domain (RBD) class 2 and 3 epitopes, it was more sensitive to mAbs to class 1 and 4/1 epitopes in the ‘inner face’ of the RBD that is exposed only when this domain is in the ‘up’ position. We also identified six new spike mutations that mediate antibody resistance, including E554K that threatens SD1 mAbs in clinical development. The BA.2.86 spike also had a remarkably high receptor affinity. The ultimate trajectory of this new SARS-CoV-2 variant will soon be revealed by continuing surveillance, but its worldwide spread is worrisome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Divergence of the BA.2.86 spike sequence from major SARS-CoV-2 variants.
Fig. 2: Serum neutralization of BA.2.86 compared with BA.2, XBB.1.5 and EG.5.1.
Fig. 3: Neutralization of BA.2.86 and its point mutants in BA.2 by a panel of mAbs.
Fig. 4: BA.2.86 exhibited stronger receptor affinity than BA.2, XBB.1.5 and EG.5.1.

Similar content being viewed by others

Data availability

All experimental data are provided in the manuscript. Materials used in this study will be available under an appropriated Materials Transfer Agreement. Antigenic maps were generated using the Racmacs package (v.1.1.4, https://acorg.github.io/Racmacs/) in R v.4.0.3. Severe acute respiratory syndrome coronavirus 2 spike sequences were downloaded from the Global Initiative on Sharing Avian Flu Data database (https://www.gisaid.org/). The structures used for analysis in this study are available from the Protein Data Bank under identification codes 7KRR, 7WKA, 8D8Q, 7MMO, 7TAS, 7TCA and 7ZF7.

References

  1. Khare, S. et al. GISAID’s role in pandemic response. China CDC Wkly 3, 1049–1051 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization. Statement on the fifteenth meeting of the IHR (2005) Emergency Committee on the COVID-19 Pandemic. WHO https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic (2023).

  3. Wang, Q. et al. Antibody neutralisation of emerging SARS-CoV-2 subvariants: EG.5.1 and XBC.1.6. Lancet Infect. Dis. 23, e397–e398 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, Q. et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 186, 279–286 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miller, J. et al. Substantial neutralization escape by SARS-CoV-2 Omicron variants BQ.1.1 and XBB.1. N. Engl. J. Med. 388, 662–664 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yue, C. et al. ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5. Lancet Infect. Dis. 23, 278–280 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. UK Health Security Agency. SARS-CoV-2 variant surveillance and assessment: technical briefing 53. UKHSA https://www.gov.uk/government/publications/investigation-of-sars-cov-2-variants-technical-briefings/sars-cov-2-variant-surveillance-and-assessment-technical-briefing-53 (2023).

  8. Wang, Q. et al. Evolving antibody evasion and receptor affinity of the Omicron BA.2.75 sublineage of SARS-CoV-2. iScience 26, 108254 (2023).

  9. Wang, Q. et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature 608, 603–608 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, L. et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602, 676–681 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Barnes, C. O. et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682–687 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Park, Y. J. et al. Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science 375, 449–454 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao, Y. et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature 614, 521–529 (2023).

    ADS  CAS  PubMed  Google Scholar 

  14. Nutalai, R. et al. Potent cross-reactive antibodies following Omicron breakthrough in vaccinees. Cell 185, 2116–2131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao, Y. et al. Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines. Cell Res. 31, 732–741 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zost, S. J. et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443–449 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, K. et al. Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants. Nature 603, 919–925 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou, B. et al. A broadly neutralizing antibody protects Syrian hamsters against SARS-CoV-2 Omicron challenge. Nat. Commun. 13, 3589 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, L. et al. Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants. Science 373, eabh1766 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Westendorf, K. et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Rep. 39, 110812 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, C. et al. The antibody response to SARS-CoV-2 Beta underscores the antigenic distance to other variants. Cell Host Microbe 30, 53–68 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao, Y. et al. Rational identification of potent and broad sarbecovirus-neutralizing antibody cocktails from SARS convalescents. Cell Rep. 41, 111845 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, L. et al. An antibody class with a common CDRH3 motif broadly neutralizes sarbecoviruses. Sci. Transl. Med. 14, eabn6859 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Z. et al. Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins. Immunity 55, 998–1012 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hong, Q. et al. Molecular basis of receptor binding and antibody neutralization of Omicron. Nature 604, 546–552 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Guenthoer, J. et al. Identification of broad, potent antibodies to functionally constrained regions of SARS-CoV-2 spike following a breakthrough infection. Proc. Natl Acad. Sci. USA 120, e2220948120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yuan, M. et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368, 630–633 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, Q. et al. Antigenic characterization of the SARS-CoV-2 Omicron subvariant BA.2.75. Cell Host Microbe 30, 1512–1517.e4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182, 1295–1310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qu, P. et al. Evasion of neutralizing antibody responses by the SARS-CoV-2 BA.2.75 variant. Cell Host Microbe 30, 1518–1526.e4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Han, P. et al. Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell 185, 630–640 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lasrado, N. et al. Neutralization escape by SARS-CoV-2 Omicron subvariant BA.2.86. Vaccine 41, 6904–6909 (2023).

  34. An, Y. et al. SARS-CoV-2 Omicron BA.2.86: less neutralization evasion compared to XBB sub-variants. Preprint at bioRxiv https://doi.org/10.1101/2023.09.26.559580 (2023).

  35. Khan, K. et al. Evolution and neutralization escape of the SARS-CoV-2 BA.2.86 subvariant. Preprint at medRxiv https://doi.org/10.1101/2023.09.08.23295250 (2023).

  36. Yang, S. et al. Antigenicity and infectivity characterisation of SARS-CoV-2 BA.2.86. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(23)00573-X (2023).

  37. Uriu, K. et al. Transmissibility, infectivity, and immune evasion of the SARS-CoV-2 BA.2.86 variant. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(23)00575-3 (2023).

  38. Sheward, D. J. et al. Sensitivity of the SARS-CoV-2 BA.2.86 variant to prevailing neutralising antibody responses. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(23)00588-1 (2023).

  39. Chalkias, S. et al. Safety and immunogenicity of XBB.1.5-containing mRNA vaccines. Preprint at medRxiv https://doi.org/10.1101/2023.08.22.23293434 (2023).

  40. Zhang, J. et al. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science 372, 525–530 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Parzych, E. M. et al. DNA-delivered antibody cocktail exhibits improved pharmacokinetics and confers prophylactic protection against SARS-CoV-2. Nat. Commun. 13, 5886 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou, T. et al. Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529. Science 376, eabn8897 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Simon, V. et al. PARIS and SPARTA: finding the Achilles’ heel of SARS-CoV-2. mSphere 7, e0017922 (2022).

    Article  PubMed  Google Scholar 

  44. Iketani, S. et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 604, 553–556 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, Q. et al. Deep immunological imprinting due to the ancestral spike in the current bivalent COVID-19 vaccine. CellRep. Med. (in the press).

  46. Liu, L., Huang, Y. & Wang, H. H. Fast and efficient template-mediated synthesis of genetic variants. Nat. Methods 20, 841–848 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).

    Article  Google Scholar 

  49. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, L. et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 584, 450–456 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Smith, D. J. et al. Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by funding from the National Institutes of Health (NIH) Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Cov-2) Assessment of Viral Evolution Program and through the NIH Collaborative Influenza Vaccine Innovation Center (Grant 75N93021C00014 to D.D.H.) and the NIH, National Institute of Allergy and Infectious Diseases (Contract 75N93019C00051 to A.G.). We acknowledge funding support from the National Science Foundation (Grant MCB-2032259 to H.H.W.). We thank all who contributed their data to the Global Initiative on Sharing Avian Flu Data database. We express our gratitude to D. Manthei, C. Gherasim, V. Blanc, P. Bennett-Baker, S. Sneeringer, L. Warsinske, T. Kowalski-Dobson, A. Meyers, Z. Chu, H. Kuiken, L. Barnes, A. Eckard, K. Lindsey, D. Davis, A. Rico, G. Simjanovski, M. Patel and N. Vydiswaran of the Immunity Associated with SARS-CoV-2 Study team for supplying serum samples. We acknowledge M. T. Yin and M. E. Sobieszczyk at Columbia University Medical Center for providing serum samples.

Author information

Authors and Affiliations

Authors

Contributions

Lihong Liu and D.D.H. conceived and supervised this project. Q.W. managed the project. Liyuan Liu, L.T.S., Yiming Huang, Y.Q. and H.H.W. constructed the spike expression plasmids. Q.W., J.H., R.M.Z. and Lihong Liu conducted pseudovirus neutralization assays. M.S.N. and Yaoxing Huang conducted authentic virus neutralization assays. Q.W. and Lihong Liu purified severe acute respiratory syndrome coronavirus 2 soluble spike proteins and hACE2 protein. Y.G. conducted bioinformatic analyses. Q.W., Lihong Liu, J.H., S.I. and J.Y. purified antibodies. Z.L. performed surface plasmon resonance assay. R.V., A.S.L. and A.G. provided clinical samples. Q.W., Y.G., Lihong Liu and D.D.H. analysed the results and wrote the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Lihong Liu or David D. Ho.

Ethics declarations

Competing interests

Lihong Liu, S.I., J.Y. and D.D.H. are inventors on a provisional patent application on 10-40 described in this manuscript, titled “Isolation, characterization, and sequences of potent and broadly neutralizing monoclonal antibodies against SARS-CoV-2 and its variants as well as related coronaviruses” (63/271,627). D.D.H. is a co-founder of TaiMed Biologics and RenBio; consultant to WuXi Biologics and Brii Biosciences; and a board director for Vicarious Surgical. A.G. serves on a scientific advisory board for Janssen Pharmaceuticals. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Spike sequence alignment of WA1 and BA.2 with BA.2.86 from human cases deposited to GISAID as of September 5, 2023.

The sequence numbering is based on WA1. Red boxes indicate the alignments of amino acids at position 16 and 670. “X”, low-quality sequencing data.

Extended Data Fig. 2 Serum neutralization of authentic BA.2.86 compared with EG.5.1.

Neutralizing ID50 titre of serum samples from “XBB breakthrough” cohort against authentic BA.2.86 and EG.5.1. The geometric mean ID50 titre (GMT) are presented above symbols. The neutralization assay limit of detection (dotted line) is 100. Statistical analysis was performed by employing Wilcoxon matched-pairs signed-rank test. GMT of BA.2.86 is around 1.2-fold (1.2X) higher than that of EG.5.1. n, sample size. dpi, days post infection.

Extended Data Table 1 Demographics of clinical cohorts
Extended Data Table 2 Neutralization activity of mAbs against the indicated viruses
Extended Data Table 3 Neutralization activity of mAbs against BA.2.86 carrying back mutations

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Guo, Y., Liu, L. et al. Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike. Nature 624, 639–644 (2023). https://doi.org/10.1038/s41586-023-06750-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06750-w

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing