Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Reply to: Accelerating ‘Oumuamua with H2 is challenging

The Original Article was published on 29 November 2023

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: H2 and D2 growth curves from H2O or D2O ice electrolysis or photolysis.

Data availability

All data are taken from the previously published articles referenced in the text.

References

  1. Ligterink, N. Accelerating ‘Oumuamua with H2 is challenging. Nature https://doi.org/10.1038/s41586-023-06697-y (2023).

  2. Bergner, J. B. & Seligman, D. Z. Acceleration of 1I/‘Oumuamua from radiolytically produced H2 in H2O ice. Nature 615, 610–613 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Hallatt, T. & Wiegert, P. The dynamics of interstellar asteroids and comets within the galaxy: an assessment of local candidate source regions for 1I/‘Oumuamua and 2I/Borisov. Astron. J. 159, 147 (2020).

    Article  ADS  Google Scholar 

  4. Jewitt, D. & Seligman, D. Z. The interstellar interlopers. Annu. Rev. Astron. Astrophys. https://doi.org/10.1146/annurev-astro-071221-054221 (2023).

  5. Watanabe, N., Horii, T. & Kouchi, A. Measurements of D2 yields from amorphous D2O ice by ultraviolet irradiation at 12 K. Astrophys. J. 541, 772–778 (2000).

    Article  ADS  CAS  Google Scholar 

  6. Zheng, W., Jewitt, D. & Kaiser, R. I. Formation of hydrogen, oxygen, and hydrogen peroxide in electron-irradiated crystalline water ice. Astrophys. J. 639, 534–548 (2006).

    Article  ADS  CAS  Google Scholar 

  7. Zheng, W., Jewitt, D. & Kaiser, R. I. Electron irradiation of crystalline and amorphous D2O ice. Chem. Phys. Lett. 435, 289–294 (2007).

    Article  ADS  CAS  Google Scholar 

  8. Sandford, S. A. & Allamandola, L. J. H2 in interstellar and extragalactic ices: infrared characteristics, ultraviolet production, and implications. Astrophys. J. Lett. 409, L65 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Gerakines, P. A., Moore, M. H. & Hudson, R. L. Carbonic acid production in H2O:CO2 ices. UV photolysis vs. proton bombardment. Astron. Astrophys. 357, 793–800 (2000).

    ADS  CAS  Google Scholar 

  10. Gerakines, P. A., Moore, M. H. & Hudson, R. L. Energetic processing of laboratory ice analogs: UV photolysis versus ion bombardment. J. Geophys. Res. 106, 33381–33386 (2001).

    Article  ADS  CAS  Google Scholar 

  11. Bodewits, D. et al. The carbon monoxide-rich interstellar comet 2I/Borisov. Nat. Astron. 4, 867–871 (2020).

    Article  ADS  Google Scholar 

  12. Cordiner, M. A. et al. Unusually high CO abundance of the first active interstellar comet. Nat. Astron. 4, 861–866 (2020).

    Article  ADS  Google Scholar 

  13. Yang, B. et al. Compact pebbles and the evolution of volatiles in the interstellar comet 2I/Borisov. Nat. Astron. 5, 586–593 (2021).

    Article  ADS  Google Scholar 

  14. Mastrapa, R. M. E. & Brown, R. H. Ion irradiation of crystalline H2O-ice: effect on the 1.65-μm band. Icarus 183, 207–214 (2006).

    Article  ADS  CAS  Google Scholar 

  15. Prialnik, D. & Jewitt, D. Amorphous ice in comets: evidence and consequences. Preprint at https://arxiv.org/abs/2209.05907 (2022).

  16. A’Hearn, M. F., Millis, R. C., Schleicher, D. O., Osip, D. J. & Birch, P. V. The ensemble properties of comets: results from narrowband photometry of 85 comets, 1976–1992. Icarus 118, 223–270 (1995).

    Article  ADS  Google Scholar 

  17. Osip, D. J., Schleicher, D. G. & Millis, R. L. Comets: groundbased observations of spacecraft mission candidates. Icarus 98, 115–124 (1992).

    Article  ADS  Google Scholar 

  18. Feldman, P., A’Hearn, M. & Festou, M. in The New Rosetta Targets. Observations, Simulations and Instrument Performances Astrophysics and Space Science Library Vol. 311 (eds Colangeli, L. et al.) 47–52 (Kluwer Academic, 2004).

  19. Choukroun, M. et al. Dust-to-gas and refractory-to-ice mass ratios of comet 67P/Churyumov–Gerasimenko from Rosetta observations. Space Sci. Rev. 216, 44 (2020).

    Article  ADS  CAS  Google Scholar 

  20. Newburn, R. L. & Spinrad, H. Spectrophotometry of seventeen comets. II—The continuum. Astrophys. J. 90, 2591–2608 (1985).

    CAS  Google Scholar 

  21. Chesley, S. R., Farnocchia, D., Pravec, P. & Vokrouhlický, D. in Asteroids: New Observations, New Models Vol. 318 (eds Chesley, S. R. et al.) 250–258 (Cambridge Univ. Press, 2016).

  22. Farnocchia, D. et al. (523599) 2003 RM: the asteroid that wanted to be a comet. Planet. Sci. J. 4, 29 (2023).

    Article  Google Scholar 

  23. Seligman, D. Z. et al. Dark comets? Unexpectedly large nongravitational accelerations on a sample of small asteroids. Planet. Sci. J. 4, 35 (2023).

    Article  Google Scholar 

  24. Farnocchia, D. et al. (523599) 2003 RM: the asteroid that wanted to be a comet. Asteroids, Comets, Meteors Conference Contribution No. 2851 (Lunar & Planetary Institute, 2023).

Download references

Acknowledgements

We thank J. Noonan and G. Laughlin for helpful conversations. D.Z.S. acknowledges financial support from the National Science Foundation Grant No. AST-2107796, NASA Grant No. 80NSSC19K0444 and NASA Contract NNX17AL71A. D.Z.S. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-2202135. This research award is partially funded by a generous gift of Charles Simonyi to the NSF Division of Astronomical Sciences. The award is made in recognition of significant contributions to Rubin Observatory’s Legacy Survey of Space and Time.

Author information

Authors and Affiliations

Authors

Contributions

J.B.B. and D.Z.S. contributed to the writing of the paper.

Corresponding authors

Correspondence to Jennifer B. Bergner or Darryl Z. Seligman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergner, J.B., Seligman, D.Z. Reply to: Accelerating ‘Oumuamua with H2 is challenging. Nature 623, E16–E17 (2023). https://doi.org/10.1038/s41586-023-06698-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06698-x

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing