Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Accelerating ‘Oumuamua with H2 is challenging

Matters Arising to this article was published on 29 November 2023

The Original Article was published on 22 March 2023

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The H2:H2Oinitial yield for a H2O-ice-dominated object irradiated by GCRs.

Data availability

The datasets generated during and/or analysed during the current study are available from the author on reasonable request.

References

  1. Bergner, J. B. & Seligman, D. Z. Acceleration of 1I/‘Oumuamua from radiolytically produced H2 in H2O ice. Nature 615, 610–613 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Sandford, S. A. & Allamandola, L. J. H2 in interstellar and extragalactic ices—infrared characteristics, ultraviolet production, and implications. Astrophys. J. 409, L65–L68 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Maggiolo, R. et al. The effect of cosmic rays on cometary nuclei. II. Impact on ice composition and structure. Astrophys. J. 901, 136 (2020).

    Article  ADS  CAS  Google Scholar 

  4. Watanabe, N., Horii, T. & Kouchi, A. Measurements of D2 yields from amorphous D2O ice by ultraviolet irradiation at 12 K. Astrophys. J. 541, 772 (2000).

    Article  ADS  CAS  Google Scholar 

  5. Zheng, W., Jewitt, D. & Kaiser, R. I. Temperature dependence of the formation of hydrogen, oxygen, and hydrogen peroxide in electron-irradiated crystalline water ice. Astrophys. J. 648, 753 (2006).

    Article  ADS  CAS  Google Scholar 

  6. Zheng, W., Jewitt, D. & Kaiser, R. I. Formation of hydrogen, oxygen, and hydrogen peroxide in electron-irradiated crystalline water ice. Astrophys. J. 639, 534 (2006).

    Article  ADS  CAS  Google Scholar 

  7. Zheng, W., Jewitt, D. & Kaiser, R. I. Electron irradiation of crystalline and amorphous D2O ice. Chem. Phys. Lett. 435, 289–294 (2007).

    Article  ADS  CAS  Google Scholar 

  8. Gomis, O., Leto, G. & Strazzulla, G. Hydrogen peroxide production by ion irradiation of thin water ice films. Astron. Astrophys. 420, 405–410 (2004).

    Article  ADS  CAS  Google Scholar 

  9. Shingledecker, C. N. et al. On simulating the proton-irradiation of O2 and H2o ices using astrochemical-type models, with implications for bulk reactivity. Astrophys. J. 876, 140 (2019).

    Article  ADS  CAS  Google Scholar 

  10. Gerakines, P. A., Moore, M. H. & Hudson, R. L. Ultraviolet photolysis and proton irradiation of astrophysical ice analogs containing hydrogen cyanide. Icarus 170, 202–213 (2004).

    Article  ADS  CAS  Google Scholar 

  11. Boogert, A. C., Gerakines, P. A. & Whittet, D. C. B. Observations of the icy universe. Annu. Rev. Astron. Astrophys. 53, 541–581 (2015).

    Article  ADS  CAS  Google Scholar 

  12. Raut, U., Mitchell, E. H. & Baragiola, R. A. Ion irradiation of H2-laden porous water-ice films: Implications for interstellar ices. Astrophys. J. 811, 120 (2015).

    Article  ADS  Google Scholar 

  13. Choukroun, M. et al. Dust-to-gas and refractory-to-ice mass ratios of comet 67P/Churyumov–Gerasimenko from Rosetta observations. Space Sci. Rev. 216, 44 (2020).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

I thank M. Rubin, K. Altwegg and E. G. Bøgelund for useful discussions. Support from the Swiss National Science Foundation (SNSF) Ambizione grant 193453 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels F. W. Ligterink.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, including Supplementary Fig. 1, Table 1 and additional references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ligterink, N.F.W. Accelerating ‘Oumuamua with H2 is challenging. Nature 623, E14–E15 (2023). https://doi.org/10.1038/s41586-023-06697-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06697-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing