Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular evidence of anteroposterior patterning in adult echinoderms

Abstract

The origin of the pentaradial body plan of echinoderms from a bilateral ancestor is one of the most enduring zoological puzzles1,2. Because echinoderms are defined by morphological novelty, even the most basic axial comparisons with their bilaterian relatives are problematic. To revisit this classical question, we used conserved anteroposterior axial molecular markers to determine whether the highly derived adult body plan of echinoderms masks underlying patterning similarities with other deuterostomes. We investigated the expression of a suite of conserved transcription factors with well-established roles in the establishment of anteroposterior polarity in deuterostomes3,4,5 and other bilaterians6,7,8 using RNA tomography and in situ hybridization in the sea star Patiria miniata. The relative spatial expression of these markers in P. miniata ambulacral ectoderm shows similarity with other deuterostomes, with the midline of each ray representing the most anterior territory and the most lateral parts exhibiting a more posterior identity. Strikingly, there is no ectodermal territory in the sea star that expresses the characteristic bilaterian trunk genetic patterning programme. This finding suggests that from the perspective of ectoderm patterning, echinoderms are mostly head-like animals and provides a developmental rationale for the re-evaluation of the events that led to the evolution of the derived adult body plan of echinoderms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deployment of the anteroposterior patterning system in deuterostomes.
Fig. 2: RNA tomography reveals the mediolateral dimension of the arms as the main driver of A–P patterning system deployment in P. miniata.
Fig. 3: Gene expression data reveal the deployment of the A–P patterning system in P. miniata ambulacral ectoderm.
Fig. 4: The ambulacral-anterior model of echinoderm body plan evolution.

Similar content being viewed by others

Data availability

Specimens used for micro-CT analyses are registered at the Natural History Museum (London, UK) under registration no. NHMUK 2023.263. The segmented scans and reconstructed mesh files are available in Morphosource under project no. 000529415. Genome haplotypes are available at DDBJ/ENA/GenBank under accession nos. JAPJSQ000000000 and JAPJSR000000000. Sequence read archives for RNA sequencing are available at DDBJ/ENA/GenBank under Bioproject PRJNA873766. RNA tomography dataset is available at Zenodo: https://doi.org/10.5281/zenodo.8327479Source data are provided with this paper.

Code availability

Custom code used for RNA tomography analyses is available at Zenodo: https://doi.org/10.5281/zenodo.8327479.

References

  1. Hyman, L. H. The Invertebrates, Vol. IV, Echinodermata: The Coelomate Bilateria (McGraw-Hill, 1955).

  2. Smith, A. B. Deuterostomes in a twist: the origins of a radical new body plan. Evol. Dev. 10, 493–503 (2008).

    Article  PubMed  Google Scholar 

  3. Albuixech-Crespo, B. et al. Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. PLoS Biol. 15, e2001573 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lowe, C. J. et al. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113, 853–865 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Pani, A. M. et al. Ancient deuterostome origins of vertebrate brain signalling centres. Nature 483, 289–294 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reichert, H. & Simeone, A. Developmental genetic evidence for a monophyletic origin of the bilaterian brain. Philos. Trans. R. Soc. Lond. B 356, 1533–1544 (2001).

    Article  CAS  Google Scholar 

  7. Hirth, F. et al. An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila. Development 130, 2365–2373 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Tomer, R., Denes, A. S., Tessmar-Raible, K. & Arendt, D. Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142, 800–809 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Bromham, L. D. & Degnan, B. M. Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate + echinoderm clade. Evol. Dev. 1, 166–171 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Cameron, C. B., Garey, J. R. & Swalla, B. J. Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proc. Natl Acad. Sci. USA 97, 4469–4474 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. David, B. & Mooi, R. How Hox genes can shed light on the place of echinoderms among the deuterostomes. EvoDevo 5, 22 (2014).

  12. Lowe, C. J., Clarke, D. N., Medeiros, D. M., Rokhsar, D. S. & Gerhart, J. The deuterostome context of chordate origins. Nature 520, 456–465 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Lowe, C. J. & Wray, G. A. Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389, 718–721 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Li, Y. et al. Genomic insights of body plan transitions from bilateral to pentameral symmetry in Echinoderms. Com. Biol. 3, 371 (2020).

  15. Popodi, E.,Andrews, M. & Raff, R. A. Evolution of body plans: using homeobox genes to examine the development of the radial CNS of echinoderms. Dev. Biol. 163, 540 (1994).

    Google Scholar 

  16. Rozhnov, S. V. Symmetry of echinoderms: from initial bilaterally-asymmetric metamerism to pentaradiality. Nat. Sci. 6, 171–183 (2014).

    Google Scholar 

  17. Holland, L. Z. Evolution of basal deuterostome nervous systems. J. Exp. Biol. 218, 637–645 (2015).

    Article  PubMed  Google Scholar 

  18. Byrne, M., Martinez, P. & Morris, V. Evolution of a pentameral body plan was not linked to translocation of anterior Hox genes: the echinoderm HOX cluster revisited. Evol. Dev. 18, 137–143 (2016).

    Article  PubMed  Google Scholar 

  19. Peterson, K. J., Arenas‐Mena, C. & Davidson, E. H. The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules. Evol. Dev. 2, 93–101 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Arenas-Mena, C., Cameron, A. R. & Davidson, E. H. Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development 127, 4631–4643 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Morris, V. B. & Byrne, M. Involvement of two Hox genes and Otx in echinoderm body‐plan morphogenesis in the sea urchin Holopneustes purpurescens. J. Exp. Zool. B Mol. 304, 456–467 (2005).

    Article  Google Scholar 

  22. Hara, Y. et al. Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus. Dev. Genes Evol. 216, 797–809 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Cisternas, P. & Byrne, M. Expression of Hox4 during development of the pentamerous juvenile sea star, Parvulastra exigua. Dev. Genes Evol. 219, 613–618 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Morris, V. B. & Byrne, M. Oral–aboral identity displayed in the expression of HpHox3 and HpHox11/13 in the adult rudiment of the sea urchin Holopneustes purpurescens. Dev. Genes Evol. 224, 1–11 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Tsuchimoto, J. & Yamaguchi, M. Hox expression in the direct‐type developing sand dollar Peronella japonica. Dev. Dynam. 243, 1020–1029 (2014).

    Article  CAS  Google Scholar 

  26. Kikuchi, M., Omori, A., Kurokawa, D. & Akasaka, K. Patterning of anteroposterior body axis displayed in the expression of Hox genes in sea cucumber Apostichopus japonicus. Dev. Genes Evol. 225, 275–286 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Adachi, S. et al. Anteroposterior molecular registries in ectoderm of the echinus rudiment. Dev. Dynam. 247, 1297–1307 (2018).

    Article  Google Scholar 

  28. Junker, J. P. et al. Genome-wide RNA tomography in the zebrafish embryo. Cell 159, 662–675 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Tominaga, H., Nishitsuji, K. & Satoh, N. A single-cell RNA-seq analysis of early larval cell-types of the starfish, Patiria pectinifera: insights into evolution of the chordate body plan. Dev. Biol. 496, 52–62 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Baughman, K. W. et al. Genomic organization of Hox and Para Hox clusters in the echinoderm, Acanthaster planci. Genesis 52, 952–958 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Shimamura, K., Hartigan, D. J., Martinez, S., Puelles, L. & Rubenstein, J. L. Longitudinal organization of the anterior neural plate and neural tube. Development 121, 3923–3933 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Quinlan, R., Graf, M., Mason, I., Lumsden, A. & Kiecker, C. Complex and dynamic patterns of Wnt pathway gene expression in the developing chick forebrain. Neural Dev. 4, 35 (2009).

  33. Byrne, M. et al. Expression of genes and proteins of the pax‐six‐eya‐dach network in the metamorphic sea urchin: insights into development of the enigmatic echinoderm body plan and sensory structures. Dev. Dynam. 247, 239–249 (2018).

    Article  CAS  Google Scholar 

  34. Paganos, P. et al. New model organism to investigate extraocular photoreception: opsin and retinal gene expression in the sea urchin Paracentrotus lividus. Cells 11, 2636 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gonzalez, P., Uhlinger, K. R. & Lowe, C. J. The adult body plan of indirect developing hemichordates develops by adding a Hox-patterned trunk to an anterior larval territory. Curr. Biol. 27, 87–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Wurst, W. & Bally-Cuif, L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nat. Rev. Neuro. 2, 99–108 (2001).

    Article  CAS  Google Scholar 

  37. Darras, S. et al. Anteroposterior axis patterning by early canonical Wnt signaling during hemichordate development. PLoS Biol. 16, e2003698 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu, P. et al. Requirement for Wnt3 in vertebrate axis formation. Nat. Genet. 22, 361–365 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Krumlauf, R. et al. Hox homeobox genes and regionalisation of the nervous system. J. Neurobiol. 24, 1328–1340 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Martín-Zamora, F. M. et al. Annelid functional genomics reveal the origins of bilaterian life cycles. Nature 615, 105–110 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. Holley, S. A. et al. A conserved system for dorsal–ventral patterning in insects and vertebrates involving sog and chordin. Nature 376, 249–253 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. De Robertis, E. M. & Sasai, Y. A common plan for dorsoventral patterning in Bilateria. Nature 380, 37–40 (1996).

    Article  ADS  PubMed  Google Scholar 

  43. Lee, K. J. & Jessell, T. M. The specification of dorsal cell fates in the vertebrate central nervous system. Annu. Rev. Neurosci. 22, 261–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Yamada, M., Revelli, J. P., Eichele, G., Barron, M. & Schwartz, R. J. Expression of chick Tbx-2, Tbx-3 and Tbx-5 genes during early heart development: evidence for BMP2 induction of Tbx2. Dev. Biol. 228, 95–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Timmer, J. R., Wang, C. & Niswander, L. BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix-loop-helix transcription factors. Development 129, 2459–2472 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Barton-Owen, T. B., Ferrier, D. E. & Somorjai, I. M. Pax3/7 duplicated and diverged independently in amphioxus, the basal chordate lineage. Sci Rep. 8, 9414 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. Koop, D. et al. Nodal and BMP expression during the transition to pentamery in the sea urchin Heliocidaris erythrogramma: insights into patterning the enigmatic echinoderm body plan. BMC Dev. Biol. 17, 4 (2017).

  48. Lowe, C. J. et al. Dorsoventral patterning in hemichordates: insights into early chordate evolution. PLoS Biol. 4, e291 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Panganiban, G. et al. The origin and evolution of animal appendages. Proc. Natl Acad. Sci. USA 94, 5162–5166 (1997).

  50. Hotchkiss, F. H. A “rays-as-appendages” model for the origin of pentamerism in echinoderms. Paleobiology 24, 200–214 (1998).

    Article  Google Scholar 

  51. Tarazona, O. A., Lopez, D. H., Slota, L. A. & Cohn, M. J. Evolution of limb development in cephalopod mollusks. eLife 8, e43828 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lacalli, T. Echinoderm conundrums: Hox genes, heterochrony and an excess of mouths. EvoDevo 5, 46 (2014).

  53. Yankura, K. A., Martik, M. L., Jennings, C. K. & Hinman, V. F. Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms. BMC Biol. 8, 143 (2010).

  54. Gąsiorowski, L. & Hejnol, A. Hox gene expression during development of the phoronid Phoronopsis harmeri. EvoDevo 11, 2 (2020).

  55. True, J. R. & Carroll, S. B. Gene co-option in physiological and morphological evolution. Annu. Rev. Cell Dev. Biol. 18, 53–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Zákány, J. & Duboule, D. Hox genes in digit development and evolution. Cell Tissue Res. 296, 19–25 (1999).

    Article  PubMed  Google Scholar 

  57. Smith, A. B. & Zamora, S. Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan. Proc. R. Soc. B 280, 20131197 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Omori, A., Shibata, T. F. & Akasaka, K. Gene expression analysis of three homeobox genes throughout early and late development of a feather star Anneissia japonica. Dev. Genes Evol. 230, 305–314 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Zamora, S. & Rahman, I. A. Deciphering the early evolution of echinoderms with Cambrian fossils. Paleontology 57, 1105–1119 (2014).

    Article  Google Scholar 

  60. Montanaro, J., Gruber, D. & Leisch, N. Improved ultrastructure of marine invertebrates using non-toxic buffers. PeerJ 4, e1860 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ronneberger, O., Fischer, P. & Brox, T. in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 (eds Navab, N. et al.) 234–241 (Springer, 2015).

  62. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article  PubMed  Google Scholar 

  65. Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7, e50685 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kruse, F., Junker, J. P., Van Oudenaarden, A. & Bakkers, J. Tomo-seq: a method to obtain genome-wide expression data with spatial resolution. Methods Cell. Biol. 135, 299–307 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Al’Khafaji, A. M. et al. High-throughput RNA isoform sequencing using programmable cDNA concatenation. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01815-7 (2023).

  68. Mattick, J. IsoSeq v.4.00. GitHub https://github.com/PacificBiosciences/IsoSeq (2023).

  69. Tseng, E. cDNA cupcake v.25.2.0. GitHub https://github.com/Magdoll/cDNA_Cupcake/wiki (2022).

  70. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tardaguila, M. et al. SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Res. 28, 396–411 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Guttman, L. Some necessary conditions for common-factor analysis. Psychometrika 19, 149–161 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  75. Murtagh, F. & Legendre, P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J. Classif. 31, 274–295 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  76. Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).

    Article  MATH  Google Scholar 

  77. Aronowicz, J. & Lowe, C. J. Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems. Int. Comp. Biol. 46, 890–901 (2006).

    Article  CAS  Google Scholar 

  78. Lemons, D., Fritzenwanker, J. H., Gerhart, J., Lowe, C. J. & McGinnis, W. Co-option of an anteroposterior head axis patterning system for proximodistal patterning of appendages in early bilaterian evolution. Dev. Biol. 344, 358–362 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Satoh, N. et al. On a possible evolutionary link of the stomochord of hemichordates to pharyngeal organs of chordates. Genesis 52, 925–934 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fritzenwanker, J. H., Uhlinger, K. R., Gerhart, J., Silva, E. & Lowe, C. J. Untangling posterior growth and segmentation by analyzing mechanisms of axis elongation in hemichordates. Proc. Natl Acad. Sci. USA 116, 8403–8408 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kaul-Strehlow, S., Urata, M., Praher, D. & Wanninger, A. Neuronal patterning of the tubular collar cord is highly conserved among enteropneusts but dissimilar to the chordate neural tube. Sci. Rep. 7, 7003 (2017).

  82. Choi, H. M. et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development 145, dev165753 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kuehn, E. et al. Segment number threshold determines juvenile onset of germline cluster expansion in Platynereis dumerilii. J. Exp. Zool. B 338, 225–240 (2022).

    Article  Google Scholar 

  84. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lowe, C. J., Tagawa, K., Humphreys, T., Kirschner, M. & Gerhart, J. Hemichordate embryos: procurement, culture and basic methods. Methods Cell. Biol. 74, 171–194 (2004).

    Article  PubMed  Google Scholar 

  86. Formery, L. et al. Neural anatomy of echinoid early juveniles and comparison of nervous system organization in echinoderms. J. Comp. Neurol. 529, 1135–1156 (2021).

    Article  PubMed  Google Scholar 

  87. Thompson, J. R., Paganos, P., Benvenuto, G., Arnone, M. I. & Oliveri, P. Post-metamorphic skeletal growth in the sea urchin Paracentrotus lividus and implications for body plan evolution. EvoDevo 12, 3 (2021).

Download references

Acknowledgements

We would like to thank F. Benedetti and R. Elahi for helping with RNA tomography analyses; A. Vailionis, P. Vyas and the Stanford Nano Shared Facility for helping with X-ray micro-CT; J. Grossman for the ambulacral-anterior model schematics; A. Formery for providing the 3D models of the RNA tomography sections; A. Rutledge for helping with animal husbandry; and V. Hinman for providing clones for preliminary analyses. We also thank G. A. Wray, T. Lacalli, R. Mooi, J. C. Croce and members of the Rokhsar and Lowe laboratories for discussions. This work was supported by a Leverhulme Trust Early Career Fellowship to J.R.T., a NASA grant to C.J.L. (NNX13AI68G), an NSF grant to C.J.L. (1656628) and Chan Zuckerberg BioHub funding to D.S.R. and C.J.L. For the purpose of open access, the author has applied a CC BY public copyright license to any Author Accepted Manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were designed by L.F., P.P., D.R.R. and C.J.L. Preliminary data were acquired by I.K., J.M. and K.R.U. Genome sequencing was done by P.P. and D.R.R. RNA tomography sectioning and sequencing were done by P.P., M.P., D.R.R. and C.J.L. RNA tomography analyses were performed by L.F. and D.S.R. Micro-CT preparation was done by L.F. and segmentation of the scans was done by J.R.T. Immunofluorescence, HCRs and imaging were performed by L.F. Data were analysed by L.F., D.S.R. and C.J.L. The manuscript was written by L.F., D.S.R. and C.J.L. with input from all authors.

Corresponding authors

Correspondence to L. Formery or C. J. Lowe.

Ethics declarations

Competing interests

P.P. and D.R.R. are employees and shareholders of Pacific Biosciences. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature thanks Andreas Hejnol and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Patiria miniata anatomy is reflected by RNA tomography.

a, Phylogenetic position of P. miniata within deuterostomes, the grey box highlights the echinoderm phylum. b, Young adult P. miniata, viewed from the aboral side. c,d, Reconstructions of a young juvenile P. miniata scanned by micro-CT and segmented to highlight the main anatomical features of the animal, including the endoskeleton (grey), the digestive tract (yellow), the main body muscles (red), the water vascular system (WVS; purple) and the central nervous system (CNS; blue). c, Lateral views showing virtual sections of the micro-CT reconstruction along the proximodistal (P–D), oral–aboral (O–A) and mediolateral (M–L) dimensions used in the RNA tomography. Scale bar, 1 mm. d, Details of the different anatomical features shown in aboral or lateral views. The different panels are shown at the same scale. TAM: transverse ambulacral muscle; LTAM: lateral transverse ambulacral muscle; Long. M: longitudinal muscle; RNC: radial nerve cord; CNR: circumoral nerve ring. e, Principal component analysis of the RNA tomography sections. For each dimension the sections are colour-coded according to the geometry of the animal. f, Spearman correlations between the sections of the RNA tomography in each of the three dimensions. Epi: epidermis; Amb: ambulacrum. g, Expression profiles along the three dimensions of the RNA tomography for tissue marker genes known based on published literature to be expressed in the endoskeleton (grey), digestive tract (yellow), muscles (red), WVS (purple) and in the nervous system (blue) are consistent with the anatomy of the animal. Note that in the case of digestive tract markers, there is a left shift of expression in the M–L dimension that we assume resulted from displacement of the pyloric caeca during the dissection of the arm.

Source Data

Extended Data Fig. 2 Dorsoventral and appendage patterning in Patiria miniate.

a, Schematic representation of D–V patterning in bilaterians. b, Expression profile of D–V specification and patterning genes along the P–D, O–A and M–L dimensions of the RNA tomography. For the M–L dimension, the dotted line indicates the midline. c-v,y-α, HCRs of P. miniata brachiolariae (c,h,m), early metamorphosis (d,i,n), late metamorphosis (e,j,o) and postmetamorphic juveniles (f,g,k,l,p-v,y-α) imaged from the oral side. In c-q,t,u,y-α, specimens are counterstained with DAPI (blue). g,l,q,r,s,v, Magnification of a single ambulacrum. c-v, Expression patterns of genes involved in D–V axis specification and patterning. w, Schematic representation of limb proximodistal patterning in bilaterians. x, Expression profile of limb proximodistal patterning genes along the P–D dimension of the RNA tomography. y-α, Expression patterns of genes involved in limb proximodistal patterning. Scale bars, 100 µm.

Source Data

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Tables 1–7.

Reporting Summary

Peer Review File

Supplementary Video

Virtual sectioning of P. miniata juvenile. Animation showing a reconstruction of a young juvenile P. miniata scanned by micro-CT and segmented to highlight the main anatomical features of the animal, including the endoskeleton (grey), the digestive tract (yellow), the main body muscles (red), the water vascular system (purple) and the central nervous system (radial nerve cords and nerve ring; blue). Cut-away views of the model show virtual sectioning along the O–A, M–L and P–D dimensions.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formery, L., Peluso, P., Kohnle, I. et al. Molecular evidence of anteroposterior patterning in adult echinoderms. Nature 623, 555–561 (2023). https://doi.org/10.1038/s41586-023-06669-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06669-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing