Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flatband λ-Ti3O5 towards extraordinary solar steam generation

Abstract

Solar steam interfacial evaporation represents a promising strategy for seawater desalination and wastewater purification owing to its environmentally friendly character1,2,3. To improve the solar-to-steam generation, most previous efforts have focused on effectively harvesting solar energy over the full solar spectrum4,5,6,7. However, the importance of tuning joint densities of states in enhancing solar absorption of photothermal materials is less emphasized. Here we propose a route to greatly elevate joint densities of states by introducing a flat-band electronic structure. Our study reveals that metallic λ-Ti3O5 powders show a high solar absorptivity of 96.4% due to Ti–Ti dimer-induced flat bands around the Fermi level. By incorporating them into three-dimensional porous hydrogel-based evaporators with a conical cavity, an unprecedentedly high evaporation rate of roughly 6.09 kilograms per square metre per hour is achieved for 3.5 weight percent saline water under 1 sun of irradiation without salt precipitation. Fundamentally, the Ti–Ti dimers and U-shaped groove structure exposed on the λ-Ti3O5 surface facilitate the dissociation of adsorbed water molecules and benefit the interfacial water evaporation in the form of small clusters. The present work highlights the crucial roles of Ti–Ti dimer-induced flat bands in enchaining solar absorption and peculiar U-shaped grooves in promoting water dissociation, offering insights into access to cost-effective solar-to-steam generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reflectivity spectra and electronic structures.
Fig. 2: 2D-SSE system and experimental results.
Fig. 3: Water adsorption and dissociation assisted by the λ-Ti3O5 \({\boldsymbol{(}}{\bf{1}}\bar{{\bf{1}}}{\bf{0}}{\boldsymbol{)}}\) surface.
Fig. 4: 3D solar steam evaporation system and experimental results.
Fig. 5: Water evaporation rate versus solar-to-steam efficiency for known 2D- and 3D-SSEs under 1 sun of irradiation.

Similar content being viewed by others

Data availability

Raw data that support the plots in this paper and other findings in the paper and the Supplementary Information are available from the corresponding author on request. Source data are provided with this paper.

Code availability

VASP is a source suite of computational tools available at www.vasp.at. The other codes written for use in this study are available from the corresponding author upon reasonable request.

References

  1. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    Article  ADS  PubMed  CAS  Google Scholar 

  2. Tao, P. et al. Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018).

    Article  ADS  Google Scholar 

  3. Ni, G. et al. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 16126 (2016).

    Article  ADS  CAS  Google Scholar 

  4. Zhou, L. et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 10, 393–397 (2016).

    Article  ADS  CAS  Google Scholar 

  5. Zhao, F. et al. Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020).

    Article  ADS  Google Scholar 

  6. Wang, J. et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 29, 201603730 (2017).

    Google Scholar 

  7. Guo, Y. et al. Molecular engineering of hydrogels for rapid water disinfection and sustainable solar vapor generation. Adv. Mater. 33, 2102994 (2021).

    Article  ADS  CAS  Google Scholar 

  8. Ghasemi, H. et al. Solar steam generation by heat localization. Nat. Commun. 5, 4449 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  9. Neumann, O. et al. Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013).

    Article  PubMed  CAS  Google Scholar 

  10. Zhou, X. et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11, 1985–1992 (2018).

    Article  CAS  Google Scholar 

  11. Shi, Y., Ilic, O., Atwater, H. A. & Greer, J. R. All-day fresh water harvesting by microstructured hydrogel membranes. Nat. Commun. 12, 2797 (2021).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wu, L. et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11, 521 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, C. L. et al. Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge. Nat. Commun. 12, 998 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Zhao, F. et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13, 489–495 (2018).

    Article  ADS  PubMed  CAS  Google Scholar 

  15. Zhou, L. et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, 1501227 (2016).

    Article  ADS  Google Scholar 

  16. Li, Y. J. et al. 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Adv. Mater. 29, 1700981 (2017).

    Article  Google Scholar 

  17. Zhu, M. W. et al. Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8, 201701028 (2018).

    Article  Google Scholar 

  18. Guo, Y. H. et al. Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano Lett. 19, 2530–2536 (2019).

    Article  ADS  PubMed  CAS  Google Scholar 

  19. Zhou, X. Y. et al. Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv. Mater. 32, 202007012 (2020).

    Article  Google Scholar 

  20. Li, R., Zhang, L., Shi, L. & Wang, P. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11, 3752–3759 (2017).

    Article  PubMed  CAS  Google Scholar 

  21. Ye, M. et al. Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Adv. Energy Mater. 7, 1601811 (2017).

    Article  Google Scholar 

  22. Liu, Z. et al. Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination. ACS Nano 8, 13007–13018 (2021).

    Article  Google Scholar 

  23. Zhu, Q. et al. A hydrogenated metal oxide with full solar spectrum absorption for highly efficient photothermal water evaporation. J. Phys. Chem. Lett. 11, 2502–2509 (2020).

    Article  PubMed  CAS  Google Scholar 

  24. Bae, K. et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  25. Lu, Y. et al. Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 15, 10366–10376 (2021).

    Article  PubMed  CAS  Google Scholar 

  26. Guo, Y. H. et al. Synergistic energy nanoconfinement and water activation in hydrogels for efficient solar water desalination. ACS Nano 13, 7913–7919 (2019).

    Article  PubMed  CAS  Google Scholar 

  27. Guo, Y. H. et al. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 32, 1907061 (2020).

    Article  CAS  Google Scholar 

  28. Guo, Y. H. et al. Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ. Sci. 13, 2087–2095 (2020).

    Article  CAS  Google Scholar 

  29. Zhou, X. Y. et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5, eaaw5484 (2019).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  30. Li, W., Li, Z., Bertelsmann, K. & Fan, D. E. Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis. Adv. Mater. 31, 1900720 (2019).

    Article  Google Scholar 

  31. Wang, Y. et al. Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones. J. Mater. Chem. A 6, 9874–9881 (2018).

    Article  CAS  Google Scholar 

  32. Qi, D. P. et al. Polymeric membranes with selective solution-diffusion for intercepting volatile organic compounds during solar-driven water remediation. Adv. Mater. 32, 2004401 (2020).

  33. Zhang, P. P. et al. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11, 5087–5093 (2017).

    Article  PubMed  CAS  Google Scholar 

  34. Tominaka, S., Tsujimoto, Y., Matsushita, Y. & Yamaura, K. Synthesis of nanostructured reduced titanium oxide: crystal structure transformation maintaining nanomorphology. Angew. Chem. Int. Ed. 50, 7418–7421 (2011).

    Article  CAS  Google Scholar 

  35. Huang, S. S. et al. Synthesis of high-performance titanium sub-oxides for electrochemical applications using combination of sol-gel and vacuum-carbothermic processes. ACS Sustain. Chem. Eng. 6, 3162–3168 (2018).

    Article  CAS  Google Scholar 

  36. Ohkoshi, S. et al. Synthesis of a metal oxide with a room-temperature photoreversible phase transition. Nat. Chem. 2, 539–545 (2010).

    Article  PubMed  CAS  Google Scholar 

  37. Mariette, C. et al. Strain wave pathway to semiconductor-to-metal transition revealed by time-resolved X-ray powder diffraction. Nat. Commun. 12, 1239 (2021).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tokoro, H. et al. External stimulation-controllable heat-storage ceramics. Nat. Commun. 6, 7037 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  39. Nakamura, Y., Sakai, Y., Azuma, M. & Ohkoshi, S. Long-term heat-storage ceramics absorbing thermal energy from hot water. Sci. Adv. 6, eaaz5264 (2020).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  40. Aeschlimann, M., Bauer, M. & Pawlik, S. Competing nonradiative channels for hot electron induced surface photochemistry. Chem. Phys. 205, 127–141 (1996).

    Article  CAS  Google Scholar 

  41. Liu, X. et al. Towards highly efficient solar-driven interfacial evaporation for desalination. J. Mater. Chem. A 8, 17907–17937 (2020).

    Article  CAS  Google Scholar 

  42. Hosseinpour, S. et al. Chemisorbed and physisorbed water at the TiO2/water interface. J. Phys. Chem. Lett. 8, 2195–2199 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhang, B. et al. Infrared spectroscopy of neutral water clusters at finite temperature: evidence for a noncyclic pentamer. Proc. Natl Acad. Sci. USA 117, 15423–15428 (2020).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  44. Rognoni, A., Conte, R. & Ceotto, M. How many water molecules are needed to solvate one? Chem. Sci. 12, 2060–2064 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zwier, T. S. The structure of protonated water clusters. Science 304, 1119–1120 (2004).

    Article  ADS  PubMed  CAS  Google Scholar 

  46. Miyazaki, M., Fujii, A., Ebata, T. & Mikami, N. Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science 304, 1134–1137 (2004).

    Article  ADS  PubMed  CAS  Google Scholar 

  47. Safe Drinking-water from Desalination (World Health Organization, 2011); http://apps.who.int/iris/bitstream/10665/70621/1/WHO_HSE_WSH_11.03_eng.pdf

  48. Yu, Z. et al. Enhanced interfacial solar evaporation through formation of micro-meniscuses and microdroplets to reduce evaporation enthalpy. Adv. Funct. Mater. 32, 2108586 (2022).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  ADS  CAS  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  51. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  52. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  ADS  PubMed  Google Scholar 

  53. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  PubMed  Google Scholar 

  54. Dudarev, S. L. et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  ADS  CAS  Google Scholar 

  55. Bokdam, M. et al. Role of polar phonons in the photo excited state of metal halide perovskites. Sci Rep. 6, 28618 (2016).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  56. Liu, P. et al. Relativistic GW+BSE study of the optical properties of Ruddlesden–Popper iridates. Phys. Rev. Mater. 2, 075003 (2018).

    Article  CAS  Google Scholar 

  57. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  ADS  CAS  Google Scholar 

  58. Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

    Article  Google Scholar 

  59. Wang, V. et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article  CAS  Google Scholar 

  60. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  ADS  Google Scholar 

  61. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  ADS  CAS  Google Scholar 

  62. Verlet, L. Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967).

    Article  ADS  CAS  Google Scholar 

  63. Scott, D. W. Multivariate Density Estimation: Theory, Practice, and Visualization (John Wiley & Sons, 1992).

  64. Li, X. Q. et al. Measuring conversion efficiency of solar vapor generation. Joule 3, 1798–1803 (2019).

    Article  Google Scholar 

  65. Chen, X. et al. Highly efficient photothermal conversion and water transport during solar evaporation enabled by amorphous hollow multishelled nanocomposites. Adv. Mater. 34, 2107400 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Wang and H. L. Qu at Analytical and Testing Center, Northeastern University, for the photoluminescence measurements and to Y. N. Jiang at Analytical and Testing Center, Institute of Metal Research, Chinese Academy of Sciences for the thermal conductivity measurements. This work was supported by the Program of Introducing Talents of Discipline Innovation to Universities 2.0 (grant no. BP0719037), China.

Author information

Authors and Affiliations

Authors

Contributions

B.Y., S.L., X.-Q.C., G.Q. and L.Z. conceived the idea and designed the experiments. Z.Z., R.T. and W.C. performed most of the experiments. P.L., J.W., Y.C., X.F. and H.Y. performed the first-principles calculations. Z.L., X.Z. and X.D. provided some help with the data analysis. B.Y., X.-Q.C., P.L. and L.Z. co-wrote the paper. All authors discussed the results, revised and approved the paper.

Corresponding author

Correspondence to Liang Zuo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Xianbao Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Structural and morphological characterization, and hydrophilicity test of λ-Ti3O5.

a, Rietveld refinement of the experimental XRD pattern. b, Raman spectrum. c, SEM image. d, TEM bright-field image. e, High-resolution TEM image (Inset: the Fast-Fourier transformation of the dotted blue area). f, Contact angle test. More details are given in Supplementary Information 1.1 and 1.2.

Extended Data Fig. 2 Surface temperatures and heat capacities of TSOs.

a, Surface temperature variations of TSO pills (~2 mm in thickness) and blank PE foam (18 mm in thickness) under one sun irradiation (left panel) and infrared photographs taken at the irradiation time of 900 s (right panel). b, Specific heat capacities of TSOs at different temperatures. More details are given in Supplementary Information 2.3.

Extended Data Fig. 3 Experimental photoluminescence (PL) spectra of λ-Ti3O5 and rutile-TiO2 at room temperature (excitation light: 344 nm, emission lights: 360–2250 nm).

a, 360–800 nm. b, 800–1600 nm. c, 1200–2250 nm. More details are given in Supplementary Information 2.4.

Extended Data Fig. 4 Schematic of the solar-to-heat conversion in λ-Ti3O5.

a, Intraband optical transition and electron/hole-phonon (e-ph/h-ph) interactions in the NIR region. b, Interband optical transition, electron-electron (e-e) scattering and e-ph/h-ph interactions in the UV-Vis region. Note that the e-e scattering and e-ph interactions in b may exchange during the relaxation of excited hot electrons, as indicated by dotted line with double arrows. More details are given in Supplementary Information 2.5.

Extended Data Fig. 5 Raman spectra of bulk water and interfacial water on 2D λ-Ti3O5 evaporator in the energy range of O-H stretching modes.

a, Bulk water. b, interfacial water on 2D λ-Ti3O5 evaporator. More details are given in Supplementary Information 4.7.

Extended Data Fig. 6 Water mass changes (left column) and mean measured water evaporation rates (right column) of PVA hydrogel-based 3D-SSEs (15 mm in diameter).

a-b, 3D-SSEs (7 mm in effective height) with or without an addition of 6 wt% TSO powders. c-d, 3D-SSEs (6 wt% λ-Ti3O5 powders) with different effective height. e-f, 3D-SSEs (20 mm in effective height) with a conical cavity (14 mm in diameter and 6 mm in depth) and different weight percentage of λ-Ti3O5 powders. More details are given in Supplementary Information 5.2. The error bars in b, d, f are the standard deviations of the mean (n = 3, n is the number of evaporation rates for each sample used to derive statistics).

Extended Data Fig. 7 Outdoor desalination performance of cylindrical 3D-SSEs with a conical cavity under natural sunlight irradiation.

a, Conceptual design and photographs of the solar water desalination system for salty water purification. b, Variations of the solar flux, water collection rate and yield of purified water with day time. c, Variations of the temperature and humidity (inside and outside the solar water desalination system) with day time. d, Average daily solar fluxes and water collection rates for a duration of 10 h on three cloudy days and four sunny days. More details are given in Supplementary Information 5.5.

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Zhang, Z., Liu, P. et al. Flatband λ-Ti3O5 towards extraordinary solar steam generation. Nature 622, 499–506 (2023). https://doi.org/10.1038/s41586-023-06509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06509-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing