Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-fidelity gates and mid-circuit erasure conversion in an atomic qubit

Abstract

The development of scalable, high-fidelity qubits is a key challenge in quantum information science. Neutral atom qubits have progressed rapidly in recent years, demonstrating programmable processors1,2 and quantum simulators with scaling to hundreds of atoms3,4. Exploring new atomic species, such as alkaline earth atoms5,6,7, or combining multiple species8 can provide new paths to improving coherence, control and scalability. For example, for eventual application in quantum error correction, it is advantageous to realize qubits with structured error models, such as biased Pauli errors9 or conversion of errors into detectable erasures10. Here we demonstrate a new neutral atom qubit using the nuclear spin of a long-lived metastable state in 171Yb. The long coherence time and fast excitation to the Rydberg state allow one- and two-qubit gates with fidelities of 0.9990(1) and 0.980(1), respectively. Importantly, a large fraction of all gate errors result in decays out of the qubit subspace to the ground state. By performing fast, mid-circuit detection of these errors, we convert them into erasure errors; during detection, the induced error probability on qubits remaining in the computational space is less than 10−5. This work establishes metastable 171Yb as a promising platform for realizing fault-tolerant quantum computing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metastable 171Yb qubit.
Fig. 2: Single-qubit gates with mid-circuit erasure conversion.
Fig. 3: Time-optimal two-qubit gates.
Fig. 4: Erasure conversion for two-qubit gates.

Similar content being viewed by others

Data availability

The data reported in this manuscript are available in the Harvard Dataverse online repository at https://doi.org/10.7910/DVN/TJ6OIF.

References

  1. Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Graham, T. M. et al. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature 604, 457–462 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Cooper, A. et al. Alkaline-earth atoms in optical tweezers. Phys. Rev. X 8, 041055 (2018).

    CAS  Google Scholar 

  6. Norcia, M., Young, A. & Kaufman, A. Microscopic control and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X 8, 041054 (2018).

    Google Scholar 

  7. Saskin, S., Wilson, J. T., Grinkemeyer, B. & Thompson, J. D. Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett. 122, 143002 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Singh, K., Anand, S., Pocklington, A., Kemp, J. T. & Bernien, H. Dual-element, two-dimensional atom array with continuous-mode operation. Phys. Rev. X 12, 011040 (2022).

    CAS  Google Scholar 

  9. Bonilla Ataides, J. P., Tuckett, D. K., Bartlett, S. D., Flammia, S. T. & Brown, B. J. The XZZX surface code. Nat. Commun. 12, 2172 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, Y., Kolkowitz, S., Puri, S. & Thompson, J. D. Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays. Nat. Commun. 13, 4657 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaufman, A. M. & Ni, K.-K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. 17, 1324–1333 (2021).

    Article  CAS  Google Scholar 

  12. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132 (2020).

    Article  CAS  Google Scholar 

  13. Singh, K. et al. Mid-circuit correction of correlated phase errors using an array of spectator qubits. Science 380, 1265–1269 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Cong, I. et al. Hardware-efficient, fault-tolerant quantum computation with Rydberg atoms. Phys. Rev. X 12, 021049 (2022).

    CAS  Google Scholar 

  15. Norcia, M. A. et al. Seconds-scale coherence on an optical clock transition in a tweezer array. Science 366, 93–97 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Madjarov, I. S. et al. An atomic-array optical clock with single-atom readout. Phys. Rev. X 9, 041052 (2019).

    CAS  Google Scholar 

  17. Barnes, K. et al. Assembly and coherent control of a register of nuclear spin qubits. Nat. Commun. 13, 2779 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma, S. et al. Universal gate operations on nuclear spin qubits in an optical tweezer array of Yb 171 atoms. Phys. Rev. X 12, 021028 (2022).

    MathSciNet  CAS  Google Scholar 

  19. Jenkins, A., Lis, J. W., Senoo, A., McGrew, W. F. & Kaufman, A. M. Ytterbium nuclear-spin qubits in an optical tweezer array. Phys. Rev. X 12, 021027 (2022).

    CAS  Google Scholar 

  20. Chen, N. et al. Analyzing the Rydberg-based optical-metastable-ground architecture for Yb 171 nuclear spins. Phys. Rev. A 105, 052438 (2022).

    Article  ADS  CAS  Google Scholar 

  21. Madjarov, I. S. et al. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys. 16, 857–861 (2020).

    Article  CAS  Google Scholar 

  22. Allcock, D. T. C. et al. omg blueprint for trapped ion quantum computing with metastable states. Appl. Phys. Lett. 119, 214002 (2021).

    Article  ADS  CAS  Google Scholar 

  23. Campbell, W. C. Certified quantum gates. Phys. Rev. A 102, 022426 (2020).

    Article  ADS  CAS  Google Scholar 

  24. Yang, H.-X. et al. Realizing coherently convertible dual-type qubits with the same ion species. Nat. Phys. 18, 1058–1061 (2022).

    Article  CAS  Google Scholar 

  25. Roman, C. H. Expanding the 171Yb+ Toolbox: The \({}^{2}{F}_{7\,/\,2}^{o}\) State as Resource for Quantum Information Science. PhD thesis, UCLA (2021); https://escholarship.org/uc/item/0mx6t24p.

  26. Grassl, M., Beth, T. & Pellizzari, T. Codes for the quantum erasure channel. Phys. Rev. A 56, 33–38 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  27. Bennett, C. H., DiVincenzo, D. P. & Smolin, J. A. Capacities of quantum erasure channels. Phys. Rev. Lett. 78, 3217–3220 (1997).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  28. Barrett, S. D. & Stace, T. M. Fault tolerant quantum computation with very high threshold for loss errors. Phys. Rev. Lett. 105, 200502 (2010).

    Article  ADS  PubMed  Google Scholar 

  29. Sahay, K., Jin, J., Claes, J., Thompson, J. D. & Puri, S. High threshold codes for neutral atom qubits with biased erasure errors. Preprint at https://arxiv.org/abs/2302.03063 (2023).

  30. Kubica, A., Haim, A., Vaknin, Y., Brandão, F. & Retzker, A. Erasure qubits: overcoming the T1 limit in superconducting circuits. Preprint at https://arxiv.org/quant-ph/abs/2208.05461 (2022).

  31. Kang, M., Campbell, W. C. & Brown, K. R. Quantum error correction with metastable states of trapped ions using erasure conversion. PRX Quantum 4, 020358 (2023).

    Article  ADS  Google Scholar 

  32. Teoh, J. D. et al. Dual-rail encoding with superconducting cavities. Preprint at https://arxiv.org/quant-ph/abs/2212.12077 (2022).

  33. Tsunoda, T. et al. Error-detectable bosonic entangling gates with a noisy ancilla. PRX Quantum 4, 020354 (2023).

    Article  ADS  Google Scholar 

  34. Lu, Y. et al. A high-fidelity microwave beamsplitter with a parity-protected converter. Preprint at https://arxiv.org/quant-ph/abs/2303.00959 (2023).

  35. Jandura, S. & Pupillo, G. Time-optimal two- and three-qubit gates for Rydberg atoms. Quantum 6, 712 (2022).

    Article  Google Scholar 

  36. Bergschneider, A. et al. Spin-resolved single-atom imaging of Li 6 in free space. Phys. Rev. A 97, 063613 (2018).

    Article  ADS  CAS  Google Scholar 

  37. Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Colombe, Y., Slichter, D. H., Wilson, A. C., Leibfried, D. & Wineland, D. J. Single-mode optical fiber for high-power, low-loss UV transmission. Optics Express 22, 19783 (2014).

    Article  ADS  PubMed  Google Scholar 

  39. Baldwin, C. H., Bjork, B. J., Gaebler, J. P., Hayes, D. & Stack, D. Subspace benchmarking high-fidelity entangling operations with trapped ions. Phys. Rev. Res. 2, 013317 (2020).

    Article  CAS  Google Scholar 

  40. Wilson, J. et al. Trapping alkaline earth Rydberg atoms optical tweezer arrays. Phys. Rev. Lett. 128, 033201 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Jandura, S., Thompson, J. D. & Pupillo, G. Optimizing Rydberg gates for logical-qubit performance. PRX Quantum 4, 020336 (2023).

    Article  ADS  Google Scholar 

  42. Fromonteil, C., Bluvstein, D. & Pichler, H. Protocols for Rydberg entangling gates featuring robustness against quasistatic errors. PRX Quantum 4, 020335 (2023).

    Article  ADS  Google Scholar 

  43. McQuillen, P., Zhang, X., Strickler, T., Dunning, F. B. & Killian, T. C. Imaging the evolution of an ultracold strontium Rydberg gas. Phys. Rev. A 87, 013407 (2013).

    Article  ADS  Google Scholar 

  44. Henkel, F. et al. Highly efficient state-selective submicrosecond photoionization detection of single atoms. Phys. Rev. Lett. 105, 253001 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Deist, E. et al. Mid-circuit cavity measurement in a neutral atom array. Phys. Rev. Lett. 129, 203602 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Graham, T. M. et al. Mid-circuit measurements on a neutral atom quantum processor. Preprint at https://arxiv.org/abs/2303.10051 (2023).

  47. Evered, S. J. et al. High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature https://doi.org/10.1038/s41586-023-06481-y (2023).

  48. Scholl, P. et al. Erasure conversion in a high-fidelity Rydberg quantum simulator. Nature https://doi.org/10.1038/s41586-023-06516-4 (2023).

  49. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Burgers, A. P. et al. Controlling Rydberg excitations using ion-core transitions in alkaline-earth atom-tweezer arrays. PRX Quantum 3, 020326 (2022).

    Article  ADS  Google Scholar 

  52. Okuno, D. et al. High-resolution spectroscopy and single-photon Rydberg excitation of reconfigurable ytterbium atom tweezer arrays utilizing a metastable state. J. Phys. Soc. Japan 91, 084301 (2022).

    Article  ADS  Google Scholar 

  53. Dörscher, S. et al. Lattice-induced photon scattering in an optical lattice clock. Phys. Rev. A 97, 063419 (2018).

    Article  ADS  Google Scholar 

  54. Wilson, A. C. et al. A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions. Appl. Phys. B 105, 741–748 (2011).

    Article  ADS  CAS  Google Scholar 

  55. Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T. & Glaser, S. J. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Wilhelm, F. K., Kirchhoff, S., Machnes, S., Wittler, N. & Sugny, D. An introduction into optimal control for quantum technologies. Preprint at https://arxiv.org/quant-ph/abs/2003.10132 (2020).

  57. de Léséleuc, S., Barredo, D., Lienhard, V., Browaeys, A. & Lahaye, T. Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states. Phys. Rev. A 97, 053803 (2018).

    Article  ADS  Google Scholar 

  58. Wood, C. J. & Gambetta, J. M. Quantification and characterization of leakage errors. Phys. Rev. A 97, 032306 (2018).

    Article  ADS  CAS  Google Scholar 

  59. Lo, H.-Y. et al. All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions. Appl. Phys. B 114, 17–25 (2014).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful conversations with S. Kolkowitz and M. Gullans. This work was supported by the Army Research Office (W911NF-1810215), the Office of Naval Research (N00014-20-1-2426), DARPA ONISQ (W911NF-20-10021), the National Science Foundation (QLCI grant OMA-2120757) and the Sloan Foundation. This research also received funding from the European Union’s Horizon 2020 programme under the Marie Sklodowska-Curie project 955479 (MOQS), the Horizon Europe programme HORIZON-CL4-2021-DIGITAL-EMERGING-01-30 via the project 101070144 (EuRyQa) and from the French National Research Agency under the Investments of the Future Program project ANR-21-ESRE-0032 (aQCess).

Author information

Authors and Affiliations

Authors

Contributions

S.M., G.L., P.P. and B.Z. performed the experiments described in the main text and analysed the data. A.P.B. contributed to experiments developing the initialization and readout procedures for the metastable qubit. S.J. and G.P. performed theoretical modelling of optimal control gate sequences and collaborated with the experimental team on gate optimization. J.C., S.P., P.P. and J.D.T. developed approaches to benchmark gates in the presence of erasure errors. All authors discussed the results. S.M., G.L., P.P., B.Z. and J.D.T. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Jeff D. Thompson.

Ethics declarations

Competing interests

G.P. is co-founder and shareholder of QPerfect.

Peer review

Peer review information

Nature thanks Wolfgang Lechner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Extended data

is available for this paper at https://doi.org/10.1038/s41586-023-06438-1.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Level diagrams and laser beam geometry.

a, Partial level diagram showing the transitions used to optically pump into the state \(\left|1\right\rangle \) for initialization. b, Partial level diagram indicating the transitions used to measure the spin state in 3P0. First, atoms in \(\left|1\right\rangle \) are removed from the trap using Rydberg excitation and subsequent autoionization. Then, all population in 3P0 is pumped back to 1S0 and imaged. c, Propagation directions and polarizations of the lasers addressing the atoms. The 556 nm and 399 nm imaging beams are not shown, but are co-propagating with the 770 nm beam and retro-reflected. The microscope objective used to project the tweezers and image the atoms (numerical aperture NA=0.6) is positioned above the glass cell. d, Partial level diagram showing the transitions between 3P0 and the Rydberg manifold used in this work. The detuning between the Rydberg states is 5.8 times larger than ΩUV. The 302 nm beam is linearly polarized perpendicular to the magnetic field, which is constrained by the geometry of our apparatus. In the future, using a pure σ+-polarized 302 nm beam would increase the gate speed by a factor of \(\sqrt{2}\) for the same laser power.

Extended Data Fig. 2 Rydberg laser system.

a, The 302 nm light is generated by a resonant cavity. The output beam is power-stabilized by a servo formed by AOM1 and PD1, and pulses are generated by AOM2. The pulsed light is coupled into a fibre and delivered to a monolithic breadboard next to the glass cell. PD2 monitors the pulse power on the breadboard. To monitor the pulse phase, a small fraction of the light is sent back to the optical table with a second fibre, and interfered with the un-modulated laser to form a beatnote on PD3 (at the frequency of AOM2). The beatnote is digitized and digitally demodulated to extract the amplitude and phase profiles shown in b and c, together with the target pulse shapes (solid lines). Programming AOM2 with a naive waveform results in phase distortion; the waveform shown in c is obtained after closed-loop correction.

Extended Data Fig. 3 Randomized circuit benchmarking experiment.

a, Sequence of operations for the entangling gate randomized circuit benchmarking experiment (the horizontal axis is not to scale). b, Comparison of the simulated gate fidelity and simulated randomized circuit benchmarking fidelity for the error model discussed in the Methods. The strength of each noise term is varied randomly around the nominal value expected for the experiment. The randomized circuit benchmarking infidelity is typically within 10% of the true gate error (shaded region), indicating that it is a good estimator of the true gate fidelity.

Extended Data Table 1 Single-qubit gate error budget
Extended Data Table 2 Two-qubit gate error budget

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Liu, G., Peng, P. et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 622, 279–284 (2023). https://doi.org/10.1038/s41586-023-06438-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06438-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing