Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased Amazon carbon emissions mainly from decline in law enforcement

Abstract

The Amazon forest carbon sink is declining, mainly as a result of land-use and climate change1,2,3,4. Here we investigate how changes in law enforcement of environmental protection policies may have affected the Amazonian carbon balance between 2010 and 2018 compared with 2019 and 2020, based on atmospheric CO2 vertical profiles5,6, deforestation7 and fire data8, as well as infraction notices related to illegal deforestation9. We estimate that Amazonia carbon emissions increased from a mean of 0.24 ± 0.08 PgC year−1 in 2010–2018 to 0.44 ± 0.10 PgC year−1 in 2019 and 0.52 ± 0.10 PgC year−1 in 2020 (± uncertainty). The observed increases in deforestation were 82% and 77% (94% accuracy) and burned area were 14% and 42% in 2019 and 2020 compared with the 2010–2018 mean, respectively. We find that the numbers of notifications of infractions against flora decreased by 30% and 54% and fines paid by 74% and 89% in 2019 and 2020, respectively. Carbon losses during 2019–2020 were comparable with those of the record warm El Niño (2015–2016) without an extreme drought event. Statistical tests show that the observed differences between the 2010–2018 mean and 2019–2020 are unlikely to have arisen by chance. The changes in the carbon budget of Amazonia during 2019–2020 were mainly because of western Amazonia becoming a carbon source. Our results indicate that a decline in law enforcement led to increases in deforestation, biomass burning and forest degradation, which increased carbon emissions and enhanced drying and warming of the Amazon forests.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Amazonia annual mean vertical profiles.
Fig. 2: Amazonia deforestation anomaly map for 2019 and 2020.
Fig. 3: Environmental law enforcement and accountability for crimes against the Amazon forest.
Fig. 4: Amazonia carbon flux 2010–2020.

Similar content being viewed by others

Data availability

The CO2 vertical profile data that support the findings of this study are available from PANGAEA Data Archiving at https://doi.org/10.1594/PANGAEA.926834 for data from 2010 to 2018. For data from 2019 and 2020, they are available at https://doi.pangaea.de/10.1594/PANGAEA.949643. Together with the CO2 and CO data are also available time trajectories, region of influence shape files, background, all variables used in the study, and Excel files.

Code availability

The uncertainty code is available at https://doi.pangaea.de/10.1594/PANGAEA.949643.

References

  1. Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Phillips, O. L. & Brienen, R. J. W. Carbon uptake by mature Amazon forests has mitigated Amazon nations’ carbon emissions. Carbon Balance Manag. 12, 1 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Gatti, L. V. et al. CO2 vertical profiles on four sites over Amazon from 2010 to 2018. PANGAEA https://doi.org/10.1594/PANGAEA.926834 (2021).

  6. Gatti, L. V. et al. CO2 vertical profiles on four sites over Amazon from 2019 to 2020. PANGAEA https://doi.pangaea.de/10.1594/PANGAEA.949643 (2023).

  7. PRODES. Amazon Deforestation Monitoring Project (PRODES/INPE). http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes (2022).

  8. BDQueimadas. INPE Biomass burning Program. https://queimadas.dgi.inpe.br/queimadas/bdqueimadas (2022).

  9. IBAMA MMA Brazilian Government. IBAMA field inspection and judgments data between 2010 and 2020. https://dados.gov.br/dados/conjuntos-dados/julgamentos-de-auto-de-infracao-realizado-no-ambito-do-ibama (2022).

  10. Saatchi, S., Houghton, R. A., dos Santos Alvalá, R. C., Soares, J. V. & Yu, Y. Distribution of aboveground live biomass in the Amazon basin. Glob. Chang. Biol. 13, 816–837 (2007).

    Article  ADS  Google Scholar 

  11. Malhi, Y. et al. in Amazon Assessment Report 2021 Ch. 6 (eds Nobre, C. et al.) (United Nations Sustainable Development Solutions Network, 2021).

  12. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Aragão, L. E. O. C. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  14. Nobre C. et al. (eds) Amazon Assessment Report 2021 (United Nations Sustainable Development Solutions Network, 2021).

  15. Costa, M. H. & Pires, G. F. Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int. J. Climatol. 30, 1970–1979 (2010).

    Article  Google Scholar 

  16. Costa, M. H. et al. in Amazon Assessment Report 2021 Ch. 7 (eds Nobre, C. et al.) (United Nations Sustainable Development Solutions Network, 2021).

  17. Leite-Filho, A. T., Costa, M. H. & Fu, R. The southern Amazon rainy season: the role of deforestation and its interactions with large-scale mechanisms. Int. J. Climatol. 40, 2328–2341 (2020).

    Article  Google Scholar 

  18. Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M. & Börner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 12, 2591 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Barbosa, L. G., Alves, M. A. S. & Grelle, C. E. V. Actions against sustainability: dismantling of the environmental policies in Brazil. Land Use Policy 104, 105384 (2021).

    Article  Google Scholar 

  20. Alencar, A., Silvestrini, R., Gomes, J. & Savian, G. Amazon in flames: the new and alarming level of deforestation in the Amazon. Technical Note, IPAM - Amazon Environmental Research Institute, https://ipam.org.br/bibliotecas/amazon-in-flames-9-the-new-and-alarming-level-of-deforestation-in-the-amazon/ (2022).

  21. Gatti, L. V. et al. in Amazon Assessment Report 2021 Cross Ch. 1 (eds Nobre, C. et al.) (United Nations Sustainable Development Solutions Network, 2021).

  22. Silva Junior, C. H. L. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, eaaz8360 (2020).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  23. Aguiar, A. P. D. et al. Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. Glob. Chang. Biol. 22, 1821–1840 (2016).

    Article  PubMed  ADS  Google Scholar 

  24. Assis, T. O. et al. CO2 emissions from forest degradation in Brazilian Amazon. Environ. Res. Lett. 15, 104035 (2020).

    Article  CAS  ADS  Google Scholar 

  25. Feng, L. et al. Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4:XCO2 retrievals, 2010–2014. Atmos. Chem. Phys. 17, 4781–4797 (2017).

    Article  CAS  ADS  Google Scholar 

  26. Ministério da Indústria, Comércio Exterior e Serviços (MDIC). Comexstat. Wood exportation http://comexstat.mdic.gov.br/pt/comex-vis (accessed 8 July 2022).

  27. Instituto Brasileiro de Geografia e Estatística (IBGE) Statistics, Brazilian Institute of Agriculture, Livestock and others. https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html?t=series-historicas (accessed 8 July 2022).

  28. Instituto Brasileiro de Geografia e Estatística (IBGE). Cattle. https://sidra.ibge.gov.br/tabela/3939#resultado (accessed 8 July 2022).

  29. Soares-Filho, B. et al. Cracking Brazil’s forest code. Science 344, 363–364 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–1123 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Soares-Filho, B. et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl Acad. Sci. 107, 10821–10826 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Ministério do Meio Ambiente (MMA). PPCDAm. http://redd.mma.gov.br/pt/acompanhamento-e-a-analise-de-impacto-das-politicas-publicas/ppcdam (2017).

  33. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA). Instrução Normativa 3, de 23 de janeiro de 2018 (regulatory instruction) (IBAMA, 2018).

  34. West, T. A. P. & Fearnside, P. M. Brazil’s conservation reform and the reduction of deforestation in Amazonia. Land Use Policy 100, 105072 (2021).

    Article  Google Scholar 

  35. Hargrave, J. & Kis-Katos, K. Economic causes of deforestation in the Brazilian Amazon: a panel data analysis for the 2000s. Environ. Resour. Econ. 54, 471–494 (2013).

    Article  Google Scholar 

  36. Börner, J., Kis-Katos, K., Hargrave, J. & König, K. Post-crackdown effectiveness of field-based forest law enforcement in the Brazilian Amazon. PLoS One 10, e0121544 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Soares-Filho, B. et al. Brazil’s market for trading forest certificates. PLoS One 11, e0152311 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Aragão, L. E. O. C. et al. Environmental change and the carbon balance of Amazonian forests. Biol. Rev. 89, 913–931 (2014).

    Article  PubMed  Google Scholar 

  39. Global Monitoring Laboratory. Trends in atmospheric carbon dioxide. https://gml.noaa.gov/ccgg/trends/gl_gr.html (accessed 8 July 2022).

  40. Gloor, E. et al. Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170302 (2018).

    Article  Google Scholar 

  41. Withey, K. et al. Quantifying immediate carbon emissions from El Niño-mediated wildfires in humid tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170312 (2018).

    Article  Google Scholar 

  42. NOAA/National Weather Service. Oceanic Niño Index (ONI). https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (2022).

  43. Gatti, L. V. et al. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506, 76–80 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Eva, H. et al. A Proposal for Defining the Geographical Boundaries of Amazonia. ISBN 9279000128 (2005).

  45. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Article  Google Scholar 

  46. Miller, J. B. et al. Airborne measurements indicate large methane emissions from the eastern Amazon basin. Geophys. Res. Lett. 34, L10809 (2007).

    Article  ADS  Google Scholar 

  47. Gatti, L. V. et al. Vertical profiles of CO2 above eastern Amazonia suggest a net carbon flux to the atmosphere and balanced biosphere between 2000 and 2009. Tellus B Chem. Phys. Meteorol. 62, 581–594 (2010).

    Article  ADS  Google Scholar 

  48. D’Amelio, M. T. S., Gatti, L. V., Miller, J. B. & Tans, P. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles. Atmos. Chem. Phys. 9, 8785–8797 (2009).

    Article  ADS  Google Scholar 

  49. Basso, L. S. et al. Seasonality and interannual variability of CH4 fluxes from the eastern Amazon Basin inferred from atmospheric mole fraction profiles. J. Geophys. Res. Atmos. 121, 168–184 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Basso, L. S. et al. Amazon methane budget derived from multi-year airborne observations highlights regional variations in emissions. Commun. Earth Environ. 2, 246 (2021).

    Article  ADS  Google Scholar 

  51. Draxler, R. R. & Rolph, G. D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory). NOAA Air Resources Laboratory (2003).

  52. Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077 (2015).

    Article  ADS  Google Scholar 

  53. Domingues, L. G. et al. A new background method for greenhouse gases flux calculation based in back-trajectories over the Amazon. Atmosphere 11, 734 (2020).

    Article  CAS  ADS  Google Scholar 

  54. Lan, X. et al. Atmospheric carbon dioxide dry air mole fractions from the NOAA GML carbon cycle cooperative global air sampling network, 1968–2021. Version: 2022-11-21, https://doi.org/10.15138/wkgj-f215 (2022).

  55. Quadratic mean, \({\bar{x}}_{q}\). in The IUPAC Compendium of Chemical Terminology. https://doi.org/10.1351/goldbook (International Union of Pure and Applied Chemistry, 2014).

  56. Baier, B. C. et al. Multispecies assessment of factors influencing regional CO2 and CH4 enhancements during the winter 2017 ACT‐America campaign. J. Geophys. Res. Atmos. 27, e2019JD031339 (2020).

    Article  ADS  Google Scholar 

  57. Jiang, N. & Riley, M. L. Exploring the utility of the random forest method for forecasting ozone pollution in SYDNEY. J. Environ. Protect. Sustain. Develop. 1, 245–254 (2015).

    Google Scholar 

  58. Stekhoven, D. J. & Buhlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, 2020).

  60. Stekhoven, D. J. missForest: nonparametric missing value imputation using random forest. R package version 1.4 (2013).

  61. Cassol, H. L. G. et al. Determination of region of influence obtained by aircraft vertical profiles using the density of trajectories from the HYSPLIT model. Atmosphere 11, 1073 (2020).

    Article  ADS  Google Scholar 

  62. Rolph, G., Stein, A. & Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 95, 210–228 (2017).

    Article  Google Scholar 

  63. Huffman, G. J. et al. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2, 36–50 (2001).

    Article  ADS  Google Scholar 

  64. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  ADS  Google Scholar 

  65. Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).

    Article  ADS  Google Scholar 

  66. Wiese, D. N., Yuan, D.-N., Boening, C., Landerer, F. W. & Watkins, M. M. JPL GRACE and GRACE-FO Mascon Ocean, Ice, and Hydrology Equivalent Water Height CRI Filtered. Ver. RL06Mv02. https://doi.org/10.5067/TEMSC-3JC62 (2019).

  67. Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L. & Justice, C. O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 217, 72–85 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  69. Brennan, J., Gómez-Dans, J. L., Disney, M. & Lewis, P. Theoretical uncertainties for global satellite-derived burned area estimates. Biogeosciences 16, 3147–3164 (2019).

    Article  ADS  Google Scholar 

  70. Vermote, E. F., El Saleous, N. Z. & Justice, C. O. Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens. Environ. 83, 97–111 (2002).

    Article  ADS  Google Scholar 

  71. Justice, C. et al. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 83, 3–15 (2002).

    Article  ADS  Google Scholar 

  72. Friedl, M. A. et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).

    Article  ADS  Google Scholar 

  73. Dalagnol, R., Wagner, F. H., Galvão, L. S., Oliveira, L. E. & Aragao, C. The MANVI product: MODIS (MAIAC) nadir-solar adjusted vegetation indices (EVI and NDVI) for South America. Zenodo https://doi.org/10.5281/zenodo.3159488 (2019).

  74. Almeida, C. T., Oliveira-Júnior, J. F., Delgado, R. C., Cubo, P. & Ramos, M. C. Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. Int. J. Climatol. 37, 2013–2026 (2017).

    Article  Google Scholar 

  75. Almeida, C. A. et al. Methodology for forest monitoring used in PRODES and DETER projects. INPE, http://urlib.net/rep/8JMKD3MGP3W34R/443H3RE (2021).

  76. Maurano, L. E. P., Escada, M. I. S. & Renno, C. D. Padrões espaciais de desmatamento e a estimativa da exatidão dos mapas do PRODES para Amazônia Legal Brasileira. Ciênc. Florest. 29, 1763–1775 (2019).

    Article  Google Scholar 

  77. Wooster, M. J. et al. Satellite remote sensing of active fires: history and current status, applications and future requirements. Remote Sens. Environ. 267, 112694 (2021).

    Article  ADS  Google Scholar 

  78. Setzer, A. W., Ferreira, N. J. & Morelli, F. in Queimadas e Incêndios Florestais: Mediante Monitoramento Orbital Ch. 1 (Oficina de Textos, 2021).

  79. Global Observations of Forest Cover and Land-use Dynamics (GOFC-GOLD). https://gofcgold.org/ (accessed 8 July 2022).

  80. Fire Information for Resource Management System (FIRMS). NASA https://www.earthdata.nasa.gov/learn/find-data/near-real-time/firms (accessed 8 July 2022).

  81. Sofan, P., Yulianto, F. & Sakti, A. D. Characteristics of false-positive active fires for biomass burning monitoring in Indonesia from VIIRS data and local geo-features. ISPRS Int. J. Geo-Inf. 11, 601 (2022).

    Article  Google Scholar 

  82. MMA. Balanço de execução: PPCDAm e PPCerrado 2016–2020. http://combateaodesmatamento.mma.gov.br/images/Doc_ComissaoExecutiva/Balano-PPCDAm-e-PPCerrado_2019_aprovado.pdf (2020).

Download references

Acknowledgements

This work was funded by many projects from the long-term measurements: State of Sao Paulo Science Foundation – FAPESP (16/02018-2, 11/51841-0, 08/58120-3, 21/09020-0, 18/14006-4, 18/14423-4, 18/18493-7, 19/21789-8, 11/17914-0), UK Natural Environmental Research Council (NERC) AMAZONICA project (NE/F005806/1), NASA grants (11-CMS11-0025, NRMJ1000-17-00431), Seventh Framework Programme (7FP) EU (283080), MCTI/CNPq (2013), CNPq (134878/2009-4, 444418/2018-0), ERC/Horizon 2020 (649087), PPGCST/INPE and PROEX/CAPES. We thank the many people at the NOAA/GML who provided advice and technical support for air sampling and measurements in Brazil and the pilots and technical team at aircraft sites who collected the air samples. We thank J. F. Mueller for providing modelled biogenic CO fluxes.

Author information

Authors and Affiliations

Authors

Contributions

L.V.G., M.G. and J.B.M. conceived the basin-wide measurement programme and approach. L.V.G. wrote the paper. All co-authors commented on and reviewed the manuscript. L.V.G., C.L.C. and L.M. performed the analysis of results. L.G.D., A.S., L.M. and L.V.G. contributed the region of influence study. H.L.G.C., E.A., C.L.C., L.M. and L.V.G. contributed the climate data weighted studies. C.G.M., L.S.S., C.A. and A.S. contributed the deforestation and fire spots analyses. L.G.D., C.S.C.C., S.P.C., R.A.L.N., F.M.S. and G.B.M.M. contributed the greenhouse gas concentration analysis. R.R., F.N., B.S.S.F. and J.S. contributed the law enforcement analysis. J.B.M. and L.V.G. contributed the estimate of the biogenic CO. S.M.C. produced the analysis of human economic activities in the Amazon region. C.L.C. produced the missForest and statistical analysis.

Corresponding author

Correspondence to Luciana V. Gatti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Christiane Derani, Steve Wofsy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Regions of influence.

Annual mean regions of influence based on back trajectories density, calculated by the HYSPLIT trajectory model for each flask, on each vertical profile along all studied years (2010–2018) for the sites SAN (2.9° S, 55.0° W), RBA (9.4° S, 67.6° W); 2010–2012 for TAB (6.0° S, 70.1° W); and from 2013 for TEF (3.4° S, 65.6° W) (see Methods).

Extended Data Fig. 2 Annual mean ΔVPs per site.

Annual mean ΔVPs for each site TAB_TEF, SAN, RBA, and ALF for the time series (2010–2020), constructed from the annual mean vertical profile, in which the background was subtracted from each height, and each flask (see Methods). The thick black lines represent the 2010–2018 Amazonia sites mean vertical profiles, the thick red lines the 2019 mean and the thick blue lines the 2020 mean.

Extended Data Fig. 3 Amazonia’s deforestation, law enforcement, and fire spots time series.

a, Deforestation limited to the Brazilian Amazonia classified as the Legal Amazon (km2) by PRODES/INPE7 from 2000 to 2020. b, Annual infraction notices without geographic coordinates (grey bars) and with geographic coordinates (orange bars). The blue line represents the embargoes and the green line represents seizures, applied by IBAMA for crimes against flora in the Legal Amazon. c, Fire spots limited to the Brazilian Amazonia classified as Biome Amazonia by BDQueimadas/INPE8 from 2000 to 2020.

Extended Data Fig. 4 Amazonia fire spot anomaly map and distribution.

Fire spots in Pan Amazonia are given in grid cells 0.25° × 0.25° and were retrieved from INPE’s ‘Queimadas’ wildfire monitoring programme8. a, 2019 anomaly compared with the mean fire spot per grid between 2010 and 2018. b, 2020 anomaly compared with the mean fire spot per grid between 2010 and 2018. c, Fire spots detected at Amazonas state from 2010 to 2020. The black line denotes 2010–2018 mean, the grey band denotes the standard deviation of the monthly mean, the red line the 2019 monthly mean and the blue line the 2020 monthly mean. d, Fire spots detected at Roraima state from 2010 to 2020.

Extended Data Fig. 5 Amazonia crops area, cattle and wood exportation.

Increase in the replacement of forest by soybean, corn, beef and wood commerce as a consequence of deforestation. a, Evolution of harvested area of soybean (black line), corn (dashed line)27 and wood exportation (red line)26. b, Cattle production evolution inside (black line) and outside Amazonia, that is, in other Brazilian states (blue line)28. a and b were built using official data from the Brazilian government.

Extended Data Fig. 6 Annual mean carbon fluxes FCTotal, FCNBE and FCFire.

a, Separation of three different areas inside the Amazon mask (7,256,362 km2, purple line) using mean annual influence regions of all years (2010–2018). Region 1: combined ALF and SAN regions of influence; region 2: combined RBA and TAB (2010–2012) and TEF (2013–2018) to compose region of influence 2 and excluding region 1 for the quantification; region 3: the remaining area outside regions 1 and 2 and inside the purple line. b, The annual mean total carbon fluxes (FCTotal), net biome exchange (FCNBE) and fire carbon fluxes (FCFire) were calculated according to the regional distribution shown on the map in a.

Extended Data Fig. 7 El Niño/La Niña episodes (ONI) and seasonal precipitation and temperature.

a, Warm (red) and cold (blue) periods based on a threshold of +/−0.5 °C for the Oceanic Niño Index (ONI) (three-month running mean of ERSST.v5 sea-surface temperature anomalies in the Niño 3.4 region (5° N–5° S, 120°–170° W)), based on 30-year base periods revised every 5 years (ref. 42). b, Seasonal monthly Amazon mean precipitation 2010–2018 (solid light blue line) and temperature (solid brown line). The grey bar is the standard deviation for the monthly means 2010–2018, the dashed line for precipitation and temperature 2019 and the dotted line for precipitation and temperature 2020.

Extended Data Fig. 8 Amazonia carbon fire and NBE flux 2010–2020.

a, Monthly means for Amazonia fire carbon flux (FCFire). The black line denotes 2010–2018 mean, in which the grey bands denote the standard deviation of the monthly mean, the red line 2019 and the blue line 2020. b, Annual mean Amazonia net biome exchange (NBE: FCTotal − FCFire). c, Annual mean Amazonia Fire carbon flux time series and d, As in c, Annual mean net biome exchange (see Methods).

Extended Data Fig. 9 Amazonia results overview.

Summary of total carbon flux (white box), fire carbon flux (red box), net biome exchange (green box) and deforestation per site (orange box). The boxes are all related to the 2010–2018 mean and 2019 (pink arrows) and 2020 (blue arrows) for all fluxes (gC m−2 day−1) and deforestation (km2).

Extended Data Table 1 Summary results for all sites

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatti, L.V., Cunha, C.L., Marani, L. et al. Increased Amazon carbon emissions mainly from decline in law enforcement. Nature 621, 318–323 (2023). https://doi.org/10.1038/s41586-023-06390-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06390-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene