Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A heavyweight early whale pushes the boundaries of vertebrate morphology

Abstract

The fossil record of cetaceans documents how terrestrial animals acquired extreme adaptations and transitioned to a fully aquatic lifestyle1,2. In whales, this is associated with a substantial increase in maximum body size. Although an elongate body was acquired early in cetacean evolution3, the maximum body mass of baleen whales reflects a recent diversification that culminated in the blue whale4. More generally, hitherto known gigantism among aquatic tetrapods evolved within pelagic, active swimmers. Here we describe Perucetus colossus—a basilosaurid whale from the middle Eocene epoch of Peru. It displays, to our knowledge, the highest degree of bone mass increase known to date, an adaptation associated with shallow diving5. The estimated skeletal mass of P. colossus exceeds that of any known mammal or aquatic vertebrate. We show that the bone structure specializations of aquatic mammals are reflected in the scaling of skeletal fraction (skeletal mass versus whole-body mass) across the entire disparity of amniotes. We use the skeletal fraction to estimate the body mass of P. colossus, which proves to be a contender for the title of heaviest animal on record. Cetacean peak body mass had already been reached around 30 million years before previously assumed, in a coastal context in which primary productivity was particularly high.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Partial skeleton of the P. colossus MUSM 3248 holotype.
Fig. 2: Pachyostosis in the P. colossus MUSM 3248 holotype.
Fig. 3: Bone histology of the P. colossus MUSM 3248 holotype.
Fig. 4: Scaling of the skeletal mass across amniotes’ body mass range.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the Article and the Supplementary Information as well as the following public repositories. Three-dimensional surface models of the holotype of P. colossus as well as Cynthiacetus peruvianus MNHN.F.PRU10 are available at MorphoMuseuM80; newly acquired CT data are available at MorphoSource (https://doi.org/10.17602/M2/M510260). The existing database AnAge69 was also used. All nomenclatural acts from this work were recorded at ZooBank: Perucetus (urn:lsid:zoobank.org:act:E5F92709-2F65-4C50-8F46-7C005F64CE03); P. colossus (urn:lsid:zoobank.org:act:CD837E76-E7B8-4E06-8F87-54AFE7AFB211).

Code availability

The code run for this study is provided at GitHub (https://github.com/eliamson/ColossalCode).

References

  1. Fordyce, R. E. in Encyclopedia of Marine Mammals 3rd edn (eds Würsig, B. et al.) 180–185 (Academic, 2018).

  2. Gingerich, P. D. Evolution of whales from land to sea. Proc. Am. Philos. Soc. 156, 309–323 (2012).

    Google Scholar 

  3. Voss, M., Antar, M. S. M., Zalmout, I. S. & Gingerich, P. D. Stomach contents of the archaeocete Basilosaurus isis: apex predator in oceans of the late Eocene. PLoS ONE 14, e0209021 (2019).

  4. Slater, G. J., Goldbogen, J. A. & Pyenson, N. D. Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. Proc. R. Soc. B 284, 20170546 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Buffrénil, V. de, Canoville, A., D’Anastasio, R. & Domning, D. P. Evolution of sirenian pachyosteosclerosis, a model-case for the study of bone structure in aquatic tetrapods. J. Mamm. Evol. 17, 101–120 (2010).

    Article  Google Scholar 

  6. Clack, J. A. Gaining Ground: The Origin and Evolution of Tetrapods (Indiana Univ. Press, 2012).

  7. Thewissen, J. G. M., Cooper, L. N., Clementz, M. T., Bajpai, S. & Tiwari, B. N. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450, 1190–1194 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Burin, G., Park, T., James, T. D., Slater, G. J. & Cooper, N. The dynamic adaptive landscape of cetacean body size. Curr. Biol. https://doi.org/10.1016/j.cub.2023.03.014 (2023).

  9. Sander, P. M. et al. Early giant reveals faster evolution of large body size in ichthyosaurs than in cetaceans. Science 374, eabf5787 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Houssaye, A., Martin Sander, P. & Klein, N. Adaptive patterns in aquatic amniote bone microanatomy—more complex than previously thought. Integr. Comp. Biol. 56, 1349–1369 (2016).

    Article  PubMed  Google Scholar 

  11. Cooper, L. N. et al. Aquatic habits of cetacean ancestors: integrating bone microanatomy and stable isotopes. Integr. Comp. Biol. 56, 1370–1384 (2016).

    Article  PubMed  Google Scholar 

  12. Di Celma, C. et al. Towards deciphering the Cenozoic evolution of the East Pisco Basin (southern Peru). J. Maps 18, 397–412 (2022).

    Article  Google Scholar 

  13. Houssaye, A., Tafforeau, P., Muizon, Cde & Gingerich, P. D. Transition of Eocene whales from land to sea: evidence from bone microstructure. PLoS ONE 10, e0118409 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dewaele, L. et al. Hypersalinity drives convergent bone mass increases in Miocene marine mammals from the Paratethys. Curr. Biol. 32, 248–255 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Gingerich, P. D., Amane, A. & Zouhri, S. Skull and partial skeleton of a new pachycetine genus (Cetacea, Basilosauridae) from the Aridal Formation, Bartonian middle Eocene, of southwestern Morocco. PLoS ONE 17, e0276110 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kellogg, R. A review of the Archaeoceti. Carn. Inst. Wash. 482, 1–366 (1936).

    Google Scholar 

  17. Uhen, M. D. Form, function, and anatomy of Dorudon atrox (Mammalia, Cetacea): an archaeocete from the middle to late Eocene of Egypt. Pap. Paleontol. 34, 1–222 (2004).

    Google Scholar 

  18. Gingerich, P. D. Stromerius nidensis, new archaeocete (Mammalia, Cetacea) from the upper Eocene Qasr el-Sagha Formation, Fayum, Egypt. Contrib. Mus. Paleontol. Univ. Michigan 31, 363–378 (2007).

    Google Scholar 

  19. Moran, M. M. et al. Intervertebral and epiphyseal fusion in the postnatal ontogeny of cetaceans and terrestrial mammals. J. Mamm. Evol. 22, 93–109 (2015).

    Article  Google Scholar 

  20. Martínez-Cáceres, M., Lambert, O. & Muizon, C. de. The anatomy and phylogenetic affinities of Cynthiacetus peruvianus, a large Dorudon-like basilosaurid (Cetacea, Mammalia) from the late Eocene of Peru. Geodiversitas 39, 7–163 (2017).

  21. Anné, J., Tumarkin-Deratzian, A. R., Cuff, H. J., Orsini, P. & Grandstaff, B. Acromegaly in a hog badger (Arctonyx collaris). Proc. Acad. Nat. Sci. Phila. 167, 49–56 (2019).

    Article  Google Scholar 

  22. Gresky, J., Sokiranski, R., Witzmann, F. & Petiti, E. The oldest case of osteopetrosis in a human skeleton: exploring the history of rare diseases. Lancet Diabetes Endocrinol. 8, 806–808 (2020).

    Article  PubMed  Google Scholar 

  23. Van Benenden, P.-J. & Gervais, P. Ostéographie des Cétacés (Arthus Bertrand, 1880).

  24. Buffrénil, V. de, Ricqlès, A., de, Ray, C. E. & Domning, D. P. Bone histology of the ribs of the archaeocetes (Mammalia: Cetacea). J. Vertebr. Paleontol. 10, 455–466 (1990).

    Article  Google Scholar 

  25. Amson, E., Billet, G. & Muizon, C. de. Evolutionary adaptation to aquatic lifestyle in extinct sloths can lead to systemic alteration of bone structure. Proc. R. Soc. B 285, 20180270 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Domning, D. P. & Buffrénil, V. de. Hydrostasis in the Sirenia: quantitative data and functional interpretations. Mar. Mammal Sci. 7, 331–368 (1991).

    Article  Google Scholar 

  27. Gingerich, P. D. Body weight and relative brain size (encephalization) in Eocene Archaeoceti (Cetacea). J. Mamm. Evol. 23, 17–31 (2016).

    Article  Google Scholar 

  28. Lockyer, C. Body weights of some species of large whales. ICES J. Mar. Sci. 36, 259–273 (1976).

    Article  Google Scholar 

  29. Taylor, M. A. Functional significance of bone ballastin in the evolution of buoyancy control strategies by aquatic tetrapods. Hist. Biol. 14, 15–31 (2000).

    Article  Google Scholar 

  30. Houssaye, A. ‘Pachyostosis’ in aquatic amniotes: a review. Integr. Zool. 4, 325–340 (2009).

    Article  PubMed  Google Scholar 

  31. Ricqlès, A. de & Buffrénil, V. de in Secondary Adaptation of Tetrapods to Life in Water (eds Mazin, J. & Buffrénil, V.) 289–310 (Dr Friedrich Pfeil, 2001).

  32. Wall, W. P. The correlation between high limb-bone density and aquatic habits in recent mammals. J. Paleontol. 57, 197–207 (1983).

    Google Scholar 

  33. Clementz, M. T., Goswami, A., Gingerich, P. D. & Koch, P. L. Isotopic records from early whales and sea cows: contrasting patterns of ecological transition. J. Vertebr. Paleontol. 26, 355–370 (2006).

    Article  Google Scholar 

  34. Gingerich, P. D., Antar, M. S. M. & Zalmout, I. S. Aegicetus gehennae, a new late Eocene protocetid (Cetacea, Archaeoceti) from Wadi Al Hitan, Egypt, and the transition to tail-powered swimming in whales. PLoS ONE 14, e0230596 (2019).

  35. Gingerich, P. D., Smith, B. H. & Simons, E. L. Hind limbs of Eocene Basilosaurus: evidence of feet in whales. Science 249, 154–157 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Buchholtz, E. A. in The Emergence of Whales (ed Thewissen, J.G.M.) 325–351 (Springer New York, 1998).

  37. Kojeszewski, T. & Fish, F. E. Swimming kinematics of the Florida manatee (Trichechus manatus latirostris): hydrodynamic analysis of an undulatory mammalian swimmer. J. Exp. Biol. 210, 2411–2418 (2007).

    Article  PubMed  Google Scholar 

  38. Fish, F. E. Comparative kinematics and hydrodynamics of odontocete cetaceans: morphological and ecological correlates with swimming performance. J. Exp. Biol. 201, 2867–2877 (1998).

    Article  PubMed  Google Scholar 

  39. Molnar, J. L., Pierce, S. E., Bhullar, B.-A. S., Turner, A. H. & Hutchinson, J. R. Morphological and functional changes in the vertebral column with increasing aquatic adaptation in crocodylomorphs. R. Soc. Open Sci. 2, 150439 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Gingerich, P. D. Land-to-sea transition in early whales: evolution of Eocene Archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living semiaquatic mammals. Paleobiology 29, 429–454 (2003).

    Article  Google Scholar 

  41. Gutarra, S. et al. Effects of body plan evolution on the hydrodynamic drag and energy requirements of swimming in ichthyosaurs. Proc. R. Soc. B 286, 20182786 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang, W., Shang, Q., Cheng, L., Wu, X. C. & Li, C. Ancestral body plan and adaptive radiation of sauropterygian marine reptiles. iScience 25, 105635 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Verberk, W. C. E. P. et al. Universal metabolic constraints shape the evolutionary ecology of diving in animals. Proc. R. Soc. B 287, 20200488 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lovegrove, B. G. & Mowoe, M. O. The evolution of mammal body sizes: responses to Cenozoic climate change in North American mammals. J. Evol. Biol. 26, 1317–1329 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Baker, J., Meade, A., Pagel, M. & Venditti, C. Adaptive evolution toward larger size in mammals. Proc. Natl Acad. Sci. USA 112, 5093–5098 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saarinen, J. et al. Patterns of maximum body size evolution in Cenozoic land mammals: eco-evolutionary processes and abiotic forcing. Proc. R. Soc. B 281, 20132049 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Price, S. A. & Hopkins, S. S. B. The macroevolutionary relationship between diet and body mass across mammals. Biol. J. Linn. Soc. 115, 173–184 (2015).

    Article  Google Scholar 

  48. Vermeij, G. J. Shifting sources of productivity in the coastal marine tropics during the Cenozoic era. Proc. R. Soc. B 278, 2362–2368 (2011).

    Article  PubMed  Google Scholar 

  49. Perch-Nielsen, K. in Plankton Stratigraphy (eds Bolli, H. M. et al.) 427–554 (Cambridge Univ. Press, 1985).

  50. Young, J. R., Bown, P. R. & Lees, J. A. Nannotax 3 http://www.mikrotax.org/Nannotax3 (International Nannoplankton Association, 2022).

  51. Martini, E. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In Proc. 2nd International Conference Planktonic Microfossils (ed. Farinacci, A.) Vol. 2, 739–785 (Tecnoscienza, 1971).

  52. Agnini, C. et al. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsl. Stratigr. 47, 131–181 (2014).

    Article  Google Scholar 

  53. Blott, S. J. & Pye, K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 26, 1237–1248 (2001).

    Article  ADS  Google Scholar 

  54. Bosio, G. et al. Tephrochronology and chronostratigraphy of the Miocene Chilcatay and Pisco formations (East Pisco Basin, Peru). Newsl. Stratigr. 53, 213–247 (2020).

    Article  Google Scholar 

  55. Gillet, A., Frédérich, B. & Parmentier, E. Divergent evolutionary morphology of the axial skeleton as a potential key innovation in modern cetaceans. Proc. R. Soc. B 286, 20191771 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. R Core Team. R: A Language and Environment for Statistical Computing https://www.r-project.org/ (2023).

  57. Wickham, H. ggplot2: elegant graphics for data analysis https://ggplot2.tidyverse.org (2016).

  58. Padian, K. & Lamm, E.-T. Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation 285 (Univ. California Press, 2013).

  59. Stein, K. & Sander, P. M. in Methods in Fossil Preparation: Proceedings of the First Annual Fossil Preparation and Collections Symposium (eds Brown, M. A. et al.) 69–80 (Petrified Forest National Park, 2009).

  60. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Canoville, A., Buffrénil, V. de & Laurin, M. Microanatomical diversity of amniote ribs: an exploratory quantitative study. Biol. J. Linn. Soc. 118, 706–733 (2016).

    Article  Google Scholar 

  63. Hayashi, S. et al. Bone inner structure suggests increasing aquatic adaptations in Desmostylia (Mammalia, Afrotheria). PLoS ONE 8, e59146 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Amson, E. & Bibi, F. Differing effects of size and lifestyle on bone structure in mammals. BMC Biol. 19, 87 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dumont, M. et al. Inner architecture of vertebral centra in terrestrial and aquatic mammals: a two-dimensional comparative study. J. Morphol. 274, 570–584 (2013).

    Article  PubMed  Google Scholar 

  66. Surowiec, R. K., Allen, M. R. & Wallace, J. M. Bone hydration: how we can evaluate it, what can it tell us, and is it an effective therapeutic target? Bone Rep. 16, 101161 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Buffrénil, V. de, Sire, J.-Y. & Schoevaert, D. Comparaison de la structure et du volume squelettiques entre un delphinidé (Delphinus delphis L.) et un mammifère terrestre (Panthera leo L.). Can. J. Zool. 64, 1750–1756 (1986).

  68. Buffrénil, V. de & Schoevaert, D. Données quantitatives et observations histologiques sur la pachyostose du squelette du dugong, Dugong dugon (Müller) (Sirenia, Dugongidae). Can. J. Zool. 67, 2107–2119 (1989).

  69. Tacutu, R. et al. Human Ageing Genomic Resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 41, D1027–D1033 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Prange, H. D., Anderson, J. F. & Rahn, H. Scaling of skeletal mass to body mass in birds and mammals. Am. Nat. 113, 103–122 (1979).

    Article  Google Scholar 

  71. Buffrénil, V. de, Collet, A. & Pascal, M. Ontogenetic development of skeletal weight in a small delphinid, Delphinus delphis (Cetacea, Odontoceti). Zoomorphology 105, 336–344 (1985).

  72. Buffrénil, V. de. Contribution à l’Étude des Spécialisations de la Structure Osseuse des Mammifères Marins. PhD thesis (Univ. Paris, 1990).

  73. Robineau, D. & Buffrénil, V. de. Nouvelles données sur la masse du squelette chez les grands cétacés (Mammalia, Cetacea). Can. J. Zool. 71, 828–834 (1993).

    Article  Google Scholar 

  74. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: linear and nonlinear mixed effects models. R package v. 3.1-162 (CRAN, 2016).

  75. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article  Google Scholar 

  78. Garnier, S. et al. viridis(Lite)—Colorblind-Friendly Color Maps for R https://doi.org/10.5281/zenodo.4679424 (2023).

  79. Blender Online Community. Blender—a 3D Modelling and Rendering Package http://www.blender.org (2018).

  80. Bianucci, G. et al. 3D models related to the publication: a heavyweight early whale pushes the boundaries of vertebrate morphology Giovanni. MorphoMuseuM https://doi.org/10.18563/journal.m3.187 (2023).

  81. Long, J. H., Pabst, D. A., Shepherd, W. R. & McLellan, W. A. Locomotor design of dolphin vertebral columns: bending mechanics and morphology of Delphinus delphis. J. Exp. Biol. 200, 65–81 (1997).

    Article  PubMed  Google Scholar 

  82. Travis, R. B., Gonzales, G. & Pardo, A. in Circum-Pacific Energy and Mineral Resources (eds Halbouty, M. et al.) 331–338 (American Association of Petroleum Geologists, 1976).

  83. Thornburg, T. & Kulm, L. D. Sedimentary basins of the Peru continental margin: structure, stratigraphy, and Cenozoic tectonics from 6°S to 16°S latitude. Mem. Geol. Soc. Am. 154, 393–422 (1981).

    Google Scholar 

  84. Malinverno, E. et al. Biostratigraphic overview and paleoclimatic-paleoceanographic implications of the middle-upper Eocene deposits from the Ica River Valley (East Pisco Basin, Peru). Palaeogeogr. Palaeoclimatol. Palaeoecol. 578, 110567 (2021).

  85. Bianucci, G. & Collareta, A. An overview of the fossil record of cetaceans from the East Pisco Basin (Peru). Boll. Soc. Paleontol. Ital. 61, 19–60 (2022).

    Google Scholar 

  86. Bosio, G. et al. Ultrastructure, composition, and 87Sr/86Sr dating of shark teeth from lower Miocene sediments of southwestern Peru. J. South Am. Earth Sci. 118, 103909 (2022).

    Article  CAS  Google Scholar 

  87. Collareta, A. et al. A rhinopristiform sawfish (genus Pristis) from the middle Eocene (Lutetian) of southern Peru and its regional implications. Carnets Géol. 20, 91–105 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Altamirano, A. Martinez Luna, E. Diaz Ramoz, G. Olmedo, J. Chauca-Luyo, M. Laime Molina, M. Burga, M. Martínez-Cáceres, N. Ramirez, P. Giuffra, R. Varas-Malca, and W. Aguirre Diaz for field fossil collection and laboratory assistance; A. Ball, L. Cornish and R. Sabin for access to the Wexford blue whale model and related data, as well as the rest of the staff in the Imaging and Analysis Centre at the NHM London who digitized the model; A. Martinez Luna for his help with the core drilling; A. Risplendente for EPMA analysis on biotite; A. Gioncada for tephra analyses; A. Larramendi for his advice on body density analyses; C. Wimmer-Pfeil and S. Morel for preparing the thin-sections; D. Hagmann, J. Schaeffer, G. Billet, F. Zachos and U. Göhlich for their help with surface models; E. Steurbaut for preliminary biostratigraphic investigation; F. Goussard for capturing the surface model of C. peruvianus’ holotype; G. Bagnoli, C. Chacaltana, T. J. DeVries, K. Gariboldi, W. Landini, G. Molli and G. Sarti for discussions about the geology and palaeontology of the East Pisco Basin; G. Carnevale for fossil fish identifications; N. Fusi for grain-size analysis; N. Valencia for his support both in the field and at the MUSM; Q. Martinez for discussions and help with CT data acquisition; V. Barberini for the assistance in 39Ar–40Ar dating; V. de Buffrénil for preliminary assessment of bone histology at an early stage of the study; V. Fischer for the surface model of a vertebra of Basilosaurus cetoides; V. de Buffrénil and D. Germain for sharing CT data; and W. Aguirre Diaz for the fossil preparation. The stay of R.B. at the MUSM has been funded by a Stan Wood Award from the Palaeontological Association. Grants from the University of Pisa (PRA_2017_0032 to G. Bianucci) and the University of Camerino (FAR 2019, STI000102 to C.D.C.), and the Italian Ministero dell’Istruzione dell’Università e della Ricerca (PRIN Project 2012YJSBMK to G.B.) supported this work.

Author information

Authors and Affiliations

Authors

Contributions

M.U. discovered and collected the fossil. E.A., G. Bianucci and O.L. conceived and designed the project. G. Bosio, A.C., C.D.C., E.M., I.M.V. and P.P.P. collected and analysed the stratigraphical data and wrote the corresponding Methods sections. A.B.-P., A.C., E.A., G. Bianucci, M.M., O.L., R.B. and R.S.-G. collected phenotypic data (including CT and/or surface scans and/or palaeohistological samples). E.A., G. Bianucci and O.L. analysed the phenotypic data. E.A., G. Bianucci and O.L. wrote the first draft of the manuscript. All of the authors discussed the analyses and reviewed the manuscript.

Corresponding author

Correspondence to Eli Amson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Mark Uhen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Three vertebrae of Perucetus colossus (MUSM 3248 holotype).

a,g,m. Anterior view. b,h,n. Posterior view. c,i,o. Dorsal view. d,j,p. Ventral view. e,k,q. Right lateral view. f,l,r. Left lateral view. Tentative position along the vertebral column: af = Th-a, penultimate thoracic; gl = Th-b, last thoracic; mr = L-a, first lumbar. All images were generated from three-dimensional surface models. Scale bar = 50 cm.

Extended Data Fig. 2 Three vertebrae of Perucetus colossus (MUSM 3248, holotype).

a,g,m. Anterior view. b,h,n., Posterior view. c,i,o. Dorsal view. d,j,p. Ventral view. e,k,q. Right lateral view. f,l,r. Left lateral view. Tentative position along the vertebral column: af = L-b, second lumbar; gl = L-c, third lumbar; mr = L-d, fourth lumbar. All images were generated from three-dimensional surface models. Scale bar = 50 cm.

Extended Data Fig. 3 Three incomplete vertebrae of Perucetus colossus (MUSM 3248, holotype).

a,g,m. Anterior view. b,h,n. Posterior view. c,i,o. Dorsal view. d,j,p. Ventral view. e,k,q. Right lateral view. f,l,r. Left lateral view. Tentative position along the vertebral column: af = L-e, fifth lumbar; gl = L-f, sixth lumbar; mr = L-g, seventh lumbar. All images were generated from three-dimensional surface models. Scale bar = 50 cm.

Extended Data Fig. 4 Two vertebrae (a–l) and three posterior ribs (m; R-b,c,d) of Perucetus colossus (MUSM 3248, holotype).

a,g. Anterior view. b,h. Posterior view. c,i. Dorsal view. d,j. Ventral view. e,k. Right lateral view. f,l Left lateral view. Tentative position along the vertebral column: af = L-j, eleventh lumbar; gl = L-k, twelfth lumbar. al. Images generated from three-dimensional surface models. m. Photograph taken in the field. Scale bars = 50 cm.

Extended Data Fig. 5 Location and stratigraphic position of Perucetus colossus MUSM 3248.

a. Map showing the position of the Coastal Batholith and major trench-parallel structural highs along the coast of Peru (redrawn and modified after Travis et al.82. and Thornburg & Kulm83). b. Stratigraphic column of the Cenozoic succession exposed in the East Pisco Basin (redrawn and modified after Malinverno et al.84, Bianucci & Collareta85, and Bosio et al.86). c. Measured stratigraphic section of the type locality of P. colossus, indicating the stratigraphic height of the holotype MUSM 3248, the dated tephra layer, and the identified bioevents.

Extended Data Fig. 6 Vertebral and costal morphology of Perucetus colossus (MUSM 3248, holotype) compared to that of other cetaceans.

a, mean and maximum ratio of vertebral centrum anteroposterior length (CL) to mediolateral width (CW), computed with the thoracic and lumbar vertebrae of other cetaceans (Ba = Basilosaurinae; Dor = Dorudontinae; FM = fossil Mysticeti; FO = fossil Odontoceti; P = Pakicetidae+Ambulocetidae; Pa = Pachycetinae; Pr = Protocetidae; R = Remingtonocetidae). b, profile of vertebral centrum length in P. colossus (Pc) compared with the profiles of other basilosaurids (Aa = Antaecetus aithai; Bc = Basilosaurus cetoides; Bi = Basilosaurus isis; Cf = Chrysocetus fouadassii Cp = Cynthiacetus peruvianus; Da = Dorudon atrox; data of A. aithai and B. isis from Gingerich et al.15, fig. 11). c, curvature (length/chord) of the best preserved rib, R-a (red horizontal line) compared to those of Cynthiacetus peruvianus (MNHN.F.PRU10).

Extended Data Fig. 7 Vertebral microanatomy illustrated with binarized sections (black = bone) obtained with physical core drills (a) or µCT data (b–f).

a, Perucetus colossus (MUSM 3248, holotype, vertebra L-e for the centrum and transverse process and L-c for the neural spine). The global compactness (Cg) was measured in ten areas (orange outlines) to assess overall centrum compactness (see Supplementary Methods). b, common minke whale (Balaenoptera acutorostrata, LR M 523). c, Amazon river dolphin (Inia geoffrensis, ZMB_Mam_41500). d, common dolphin (Delphinus sp. ZMB_Mam_697.59). e, dugong (Dugong dugon, ZMB_Mam_69340). f, manatee (Trichechus manatus, ZMB_Mam_17377). (1) Centrum (anteroposterior mid-length, from its dorsal edge to its centre), external towards top; (2) Neural spine (dorsoventral mid-height), external towards right); (3) Transverse process (mediolateral mid-width), external towards top. Width of the virtual cross-sections were defined as representing 7.2% of the centrum dorsoventral height; this is the mean ratio between the centrum height of P. colossus and the width of the physical core drills. The core drills of the neural spine and transverse process do not reach the middle of the corresponding vertebral parts (but break surfaces indicate uniform structure throughout). See core drills’ location in Supplementary Fig. S6c,d. Scale bars: a = 13.9 mm, b = 23.6 mm, c = 2.2 mm, d = 2.7 mm, e = 3.2 mm, f = 3.0 mm.

Extended Data Fig. 8 Estimating the whole skeletal volume of Perucetus colossus based on Cynthiacetus peruvianus’ holotype (MNHN.F.PRU10).

a. Unmodified 3D model of Cynthiacetus peruvianus’ holotype. b,c. vertebral column scaled-up (top) and dilated (bottom). c,d. Rib cage scaled-up (top) and dilated (bottom) identifying the scanned rib of P. colossus as R17 (c) or R20 (d). Scale bars = 2 m.

Extended Data Fig. 9 Estimates of the osteological range of motion.

Extension and flexion of the preserved portion of vertebral column of Perucetus colossus holotype (MUSM 3248) is compared with an equivalent vertebral column portion of Cynthiacetus peruvianus holotype (MNHN.F.PRU10) using the respective 3D models. Intervertebral spaces were reconstructed based on the common dolphin (Delphinus delphis)81 (see Methods). Scale bar = 50 cm.

Extended Data Fig. 10 Reconstruction of Perucetus colossus in its coastal habitat.

Because portions of the skeleton are unknown, several aspects of the reconstruction are tentative: the overall proportions of the axial postcranium are based on a close relative Cynthiacetus peruvianus, which was scaled-up and dilated according to the elements recovered for P. colossus (see Extended Data Fig. 8); the skull and limbs were only scaled-up; the tail fluke and forelimb use (bottom-walking) are based on the manatee (Trichechus), the extant marine mammal with the closest degree of pachyosteosclerosis in the postcranial skeleton; the hind limb of P. colossus was not recovered, but the anatomy of its innominate indicates the presence of a reduced, articulated leg. The associated sawfish (Pristis) was recovered from the same unit in the East Pisco Basin, the Yumaque Member of the Paracas Formation87. Reconstruction by A. Gennari.

Supplementary information

Supplementary Information

Supplementary Methods (including Supplementary Figs. 1–9), Supplementary Discussion (including Supplementary Figs. 10–12), Supplementary References and Supplementary Tables 1–22.

Reporting Summary

Peer Review File

Supplementary Data 1

Rib curvature. Data table containing rib curvature values for Cynthiacetus peruvianus (MNHN.F.PRU10) and Perucetus colossus (MUSM 3248, holotype).

Supplementary Data 2

Skeletal and body mass data. Data tables containing measured skeletal and whole body masses for extant, terrestrial mammals and measured and estimated skeletal and whole body masses for aquatic mammals and other terrestrial taxa. All values in kg. See Supplementary Methods for the estimation procedures.

Supplementary Data 3

Vertebral proportions. Data tables containing extinct cetaceans’ vertebral proportions as well as the literature references from which they stem.

Supplementary Data 4

Vertebral parts’ volume. Data table containing the volume of individual vertebral parts for Cynthiacetus peruvianus (MNHN.F.PRU10) and Perucetus colossus (MUSM 3248, holotype).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianucci, G., Lambert, O., Urbina, M. et al. A heavyweight early whale pushes the boundaries of vertebrate morphology. Nature 620, 824–829 (2023). https://doi.org/10.1038/s41586-023-06381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06381-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing