Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure evolution at the gate-tunable suspended graphene–water interface

Abstract

Graphitic electrode is commonly used in electrochemical reactions owing to its excellent in-plane conductivity, structural robustness and cost efficiency1,2. It serves as prime electrocatalyst support as well as a layered intercalation matrix2,3, with wide applications in energy conversion and storage1,4. Being the two-dimensional building block of graphite, graphene shares similar chemical properties with graphite1,2, and its unique physical and chemical properties offer more varieties and tunability for developing state-of-the-art graphitic devices5,6,7. Hence it serves as an ideal platform to investigate the microscopic structure and reaction kinetics at the graphitic-electrode interfaces. Unfortunately, graphene is susceptible to various extrinsic factors, such as substrate effect8,9,10, causing much confusion and controversy7,8,10,11. Hereby we have obtained centimetre-sized substrate-free monolayer graphene suspended on aqueous electrolyte surface with gate tunability. Using sum-frequency spectroscopy, here we show the structural evolution versus the gate voltage at the graphene–water interface. The hydrogen-bond network of water in the Stern layer is barely changed within the water-electrolysis window but undergoes notable change when switching on the electrochemical reactions. The dangling O–H bond protruding at the graphene–water interface disappears at the onset of the hydrogen evolution reaction, signifying a marked structural change on the topmost layer owing to excess intermediate species next to the electrode. The large-size suspended pristine graphene offers a new platform to unravel the microscopic processes at the graphitic-electrode interfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Suspended MLG sample on water.
Fig. 2: Gate tunability of the suspended MLG.
Fig. 3: In situ SFVS spectra of the graphene–electrolyte interface.
Fig. 4: SF spectrum and cyclic voltammetry curves near the onset of chemical reactions.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available in the paper and source data files. Should any raw data files be needed in another format, they are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Das, R. K. et al. Extraordinary hydrogen evolution and oxidation reaction activity from carbon nanotubes and graphitic carbons. ACS Nano 8, 8447–8456 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Murthy, A. P., Madhavan, J. & Murugan, K. Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media. J. Power Sources 398, 9–26 (2018).

    Article  ADS  CAS  Google Scholar 

  3. Enoki, T., Suzuki, M. & Endo, M. Graphite Intercalation Compounds and Applications (Oxford Univ. Press, 2003).

  4. Bonaccorso, F. et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015).

    Article  PubMed  Google Scholar 

  5. Bie, Y.-Q. et al. Vibrational spectroscopy at electrolyte/electrode interfaces with graphene gratings. Nat. Commun. 6, 7593 (2015).

    Article  ADS  PubMed  Google Scholar 

  6. Peng, Q., Chen, J., Ji, H., Morita, A. & Ye, S. Origin of the overpotential for the oxygen evolution reaction on a well-defined graphene electrode probed by in situ sum frequency generation vibrational spectroscopy. J. Am. Chem. Sci. 140, 15568–15571 (2018).

    Article  CAS  Google Scholar 

  7. Montenegro, A. et al. Asymmetric response of interfacial water to applied electric fields. Nature 594, 62–65 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Rafiee, J. et al. Wetting transparency of graphene. Nat. Mater. 11, 217–222 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Achtyl, J. L. et al. Aqueous proton transfer across single-layer graphene. Nat. Commun. 6, 6539 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Dreier, L. B. et al. Surface-specific spectroscopy of water at a potentiostatically controlled supported graphene monolayer. J. Phys. Chem. C 123, 24031–24038 (2019).

    Article  CAS  Google Scholar 

  11. Ohto, T., Tada, H. & Nagata, Y. Structure and dynamics of water at water–graphene and water–hexagonal boron-nitride sheet interfaces revealed by ab initio sum-frequency generation spectroscopy. Phys. Chem. Chem. Phys. 20, 12979–12985 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, Y., de Aguiar, H. B., Hynes, J. T. & Laage, D. Water structure, dynamics, and sum-frequency generation spectra at electrified graphene interfaces. J. Phys. Chem. Lett. 11, 624–631 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Singla, S. et al. Insight on structure of water and ice next to graphene using surface-sensitive spectroscopy. ACS Nano 11, 4899–4906 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. He, Q. et al. Electrochemical storage of atomic hydrogen on single layer graphene. J. Am. Chem. Soc. 143, 18419–18425 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Beams, R., Cançado, L. G. & Novotny, L. Raman characterization of defects and dopants in graphene. J. Phys. Condens. Matter 27, 083002 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Chen, F., Qing, Q., Xia, J., Li, J. & Tao, N. Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution. J. Am. Chem. Soc. 131, 9908–9909 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2001).

  18. Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Döppenschmidt, A. & Butt, H.-J. Measuring electrostatic double-layer forces on HOPG at high surface potentials. Colloids Surf. A 149, 145–150 (1999).

    Article  Google Scholar 

  20. Sun, S. et al. Phase reference in phase-sensitive sum-frequency vibrational spectroscopy. J. Chem. Phys. 144, 244711 (2016).

    Article  ADS  PubMed  Google Scholar 

  21. Ji, N., Ostroverkhov, V., Tian, C. & Shen, Y. Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy. Phys. Rev. Lett. 100, 096102 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Wen, Y.-C. et al. Unveiling microscopic structures of charged water interfaces by surface-specific vibrational spectroscopy. Phys. Rev. Lett. 116, 016101 (2016).

    Article  ADS  PubMed  Google Scholar 

  23. Cheng, J., Vermeulen, N. & Sipe, J. Second order optical nonlinearity of graphene due to electric quadrupole and magnetic dipole effects. Sci. Rep. 7, 43843 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morita, A. Theory of Sum Frequency Generation Spectroscopy 201–218 (Springer, 2018).

  25. Somorjai, G. A. & Li, Y. Introduction to Surface Chemistry and Catalysis (Wiley, 2010).

  26. Zhang, Y. et al. Doping-induced second-harmonic generation in centrosymmetric graphene from quadrupole response. Phys. Rev. Lett. 122, 047401 (2019).

    Article  ADS  PubMed  Google Scholar 

  27. Shin, S., Kang, H., Cho, D., Lee, J. Y. & Kang, H. Effect of electric field on condensed-phase molecular systems. II. Stark effect on the hydroxyl stretch vibration of ice. J. Phys. Chem. C 119, 15596–15603 (2015).

    Article  CAS  Google Scholar 

  28. Tomlinson-Phillips, J. et al. Structure and dynamics of water dangling OH bonds in hydrophobic hydration shells. Comparison of simulation and experiment. J. Phys. Chem. A 115, 6177–6183 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Kronberg, R., Lappalainen, H. & Laasonen, K. Revisiting the Volmer–Heyrovský mechanism of hydrogen evolution on a nitrogen doped carbon nanotube: constrained molecular dynamics versus the nudged elastic band method. Phys. Chem. Chem. Phys. 22, 10536–10549 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Wilhelm, F., Schmickler, W. & Spohr, E. Proton transfer to charged platinum electrodes. A molecular dynamics trajectory study. J. Phys. Condens. Matter 22, 175001 (2010).

    Article  ADS  PubMed  Google Scholar 

  31. Kibsgaard, J. et al. Cluster–support interactions and morphology of MoS2 nanoclusters in a graphite-supported hydrotreating model catalyst. J. Am. Chem. Soc. 128, 13950–13958 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, G. & Liu, G. Electrochemical deposition of gold nanoparticles on reduced graphene oxide by fast scan cyclic voltammetry for the sensitive determination of As(III). Nanomaterials 9, 41 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Brown, M. A., Goel, A. & Abbas, Z. Effect of electrolyte concentration on the Stern layer thickness at a charged interface. Angew. Chem. Int. Ed. 128, 3854–3858 (2016).

    Article  ADS  Google Scholar 

  34. Cole, D. J., Ang, P. K. & Loh, K. P. Ion adsorption at the graphene/electrolyte interface. J. Phys. Chem. Lett. 2, 1799–1803 (2011).

    Article  CAS  Google Scholar 

  35. Elliott, J., Papaderakis, A. A., Dryfe, R. & Carbone, P. The electrochemical double layer at the graphene/aqueous electrolyte interface: what we can learn from simulations, experiments, and theory. J. Mater. Chem. C 10, 15225–15262 (2022).

    Article  CAS  Google Scholar 

  36. Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Chiang, K.-Y. et al. The dielectric function profile across the water interface through surface-specific vibrational spectroscopy and simulations. Proc. Natl Acad. Sci. USA 119, e2204156119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rezaei, M. et al. Interfacial, electroviscous, and nonlinear dielectric effects on electrokinetics at highly charged surfaces. J. Phys. Chem. B 125, 4767–4778 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wen, Y.-C., Zha, S., Tian, C. & Shen, Y. R. Surface pH and ion affinity at the alcohol-monolayer/water interface studied by sum-frequency spectroscopy. J. Phys. Chem. C 120, 15224–15229 (2016).

    Article  CAS  Google Scholar 

  40. Ohno, P. E., Saslow, S. A., Wang, H.-f., Geiger, F. M. & Eisenthal, K. B. Phase-referenced nonlinear spectroscopy of the α-quartz/water interface. Nat. Commun. 7, 13587 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, L., Tian, C., Waychunas, G. A. & Shen, Y. R. Structures and charging of α-alumina (0001)/water interfaces studied by sum-frequency vibrational spectroscopy. J. Am. Chem. Soc. 130, 7686–7694 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Fitts, J. P., Shang, X., Flynn, G. W., Heinz, T. F. & Eisenthal, K. B. Electrostatic surface charge at aqueous/α-Al2O3 single-crystal interfaces as probed by optical second-harmonic generation. J. Phys. Chem. B 109, 7981–7986 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, S. et al. Stabilization of hydroxide ions at the interface of a hydrophobic monolayer on water via reduced proton transfer. Phys. Rev. Lett. 125, 156803 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Döppenschmidt, A. & Butt, H.-J. Measuring electrostatic double-layer forces on HOPG at high surface potentials. Colloids Surf. A 149, 145–150 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12125403, 11874123, 12221004, 12293053) and the National Key Research and Development Program of China (2021YFA1400202, 2021YFA1400503). We thank K. Liu and Carbon Six Co. for discussions on the CVD graphene growth and Y.-D. Su for discussions on the analysis of data.

Author information

Authors and Affiliations

Authors

Contributions

Y.X. and C.-S.T. devised the project. Y.X., Y.-B.M., S.-S.Y. and F.G. carried out the experiments. Y.X., F.G. and C.-S.T. analysed the data. Y.X., F.G. and C.-S.T. drafted the manuscript and all authors contributed to the final version.

Corresponding author

Correspondence to Chuan-Shan Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Dilution process.

Flow chart of diluting the electrolyte (CuSO4, 0.3 M) used for electrochemical etching of copper.

Extended Data Fig. 2 Equivalent circuit model of the interface.

The equivalent circuit and illustration of the EDL at the gated MLG–water interface.

Extended Data Fig. 3 MLG carrier density and Fermi level.

Carrier density n (a) and the Fermi level μ (b) of graphene versus VG.

Source data

Extended Data Fig. 4 Supplementary Raman spectra.

ac, Raman spectrum of the monolayer graphene sample at different gate voltage VG.

Source data

Extended Data Fig. 5 Sketch of the PS SFVS setup.

Collinear geometry used in the PS SFVS detection.

Extended Data Fig. 6 \({{\boldsymbol{\chi }}}_{{\bf{g}}}^{{\boldsymbol{(}}{\bf{2}}{\boldsymbol{)}}}\) of graphene and χ(3)Ψ in the diffuse layer.

a, Im(χ(2)) spectra at different VG. Dashed curves are the calculated Im(\({\chi }_{{\rm{g}}}^{(2)}\)) spectra of graphene with Vpzc = 0.5 V. b, Im[\({\chi }_{{\rm{s}}}^{(2)}\)(ωIR = 3,000 cm−1) + χ(3)(ωIR = 3,000 cm−1)Ψ] versus VG. The shaded region denotes uncertainty. Error bars are calculated from 30 averages.

Source data

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Ma, YB., Gu, F. et al. Structure evolution at the gate-tunable suspended graphene–water interface. Nature 621, 506–510 (2023). https://doi.org/10.1038/s41586-023-06374-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06374-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing