Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subsecond periodic radio oscillations in a microquasar

Abstract

Powerful relativistic jets are one of the ubiquitous features of accreting black holes in all scales1,2,3. GRS 1915 + 105 is a well-known fast-spinning black-hole X-ray binary4 with a relativistic jet, termed a ‘microquasar’, as indicated by its superluminal motion of radio emission5,6. It has exhibited persistent X-ray activity over the last 30 years, with quasiperiodic oscillations of approximately 1–10 Hz (refs. 7,8,9) and 34 and 67 Hz in the X-ray band10. These oscillations probably originate in the inner accretion disk, but other origins have been considered11. Radio observations found variable light curves with quasiperiodic flares or oscillations with periods of approximately 20–50 min (refs. 12,13,14). Here we report two instances of approximately 5-Hz transient periodic oscillation features from the source detected in the 1.05- to 1.45-GHz radio band that occurred in January 2021 and June 2022. Circular polarization was also observed during the oscillation phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Light curves during the QPO phase in 2021.
Fig. 2: Evolution of the polarization parameters.
Fig. 3: Fast variations of the QPO.
Fig. 4: The power spectra of radio light curves based on the FAST observational data.

Similar content being viewed by others

Data availability

All relevant data for the GRS 1915 + 105 observations are available from the Five-Hundred-Meter Aperture Spherical Radio Telescope archive (http://fast.bao.ac.cn) one year after data taking following the Five-Hundred-Meter Aperture Spherical Radio Telescope data policy. Owing to the large data volume for these observations, interested users are encouraged to contact the corresponding author to arrange the data transfer. The data that support the findings of this study are openly available in the Science Data Bank at https://doi.org/10.57760/sciencedb.08478.

Code availability

Code is available at PSRCHIVE (http://psrchive.sourceforge.net), DSPSR (http://dspsr.sourceforge.net) and PRESTO (https://github.com/scottransom/presto).

References

  1. Mirabel, I. F. & Rodriguez, L. F. Sources of relativistic jets in the galaxy. Annu. Rev. Astron. Astrophys. 37, 409–443 (1999).

    Article  ADS  Google Scholar 

  2. Remillard, R. A. & McClintock, J. E. X-ray properties of black-hole binaries. Annu. Rev. Astron. Astrophys. 44, 49–92 (2006).

    Article  ADS  Google Scholar 

  3. Zensus, J. A. Parsec-scale jets in extragalactic radio sources. Annu. Rev. Astron. Astrophys. 35, 607–636 (1997).

    Article  ADS  Google Scholar 

  4. McClintock, J. E. et al. The spin of the near-extreme Kerr black hole GRS 1915+105. Astrophys. J. 652, 518 (2006).

    Article  ADS  CAS  Google Scholar 

  5. Mirabel, I. F. & Rodriguez, L. F. A superluminal source in the Galaxy. Nature 371, 46–48 (1994).

    Article  ADS  Google Scholar 

  6. Fender, R. & Belloni, T. GRS 1915+105 and the disc-jet coupling in accreting blach hole systems. Annu. Rev. Astron. Astrophys. 42, 317–364 (2004).

    Article  ADS  CAS  Google Scholar 

  7. Belloni, T. M. et al. A model independent analysis of the variability of GRS 1915+105. Astron. Astrophys. 355, 271–290 (2000).

    ADS  Google Scholar 

  8. Misra, R. et al. Identification of QPO frequency of GRS 1915+105 as the relativistic dynamic frequency of a truncated accretion disk. Astrophys. J. 889, L36 (2020).

    Article  ADS  Google Scholar 

  9. Zhang, L. et al. A systematic analysis of the phase lags associated with the type-C quasi-periodic oscillation in GRS 1915+105. Mon. Not. R. Astron. Soc. 494, 1375–1386 (2020).

    Article  ADS  Google Scholar 

  10. Belloni, T. M. & Altamirano, D. Discovery of a 34Hz quasi-periodic oscillation in the X-ray emission of GRS 1915+105. Mon. Not. R. Astron. Soc. 432, 19–22 (2013).

    Article  ADS  Google Scholar 

  11. Ingram, A. & Motta, S. E. A review of quasi-periodic oscillations from black hole X-ray binaries: observation and theory. New Astron. Rev. 85, 101524 (2019).

    Article  Google Scholar 

  12. Pooley, G. G. & Fender, R. P. The variable radio emission from GRS 1915+105. Mon. Not. R. Astron. Soc. 292, 925–933 (1997).

    Article  ADS  Google Scholar 

  13. Rodriguez, L. F. & Mirabel, I. F. Fast sinusoidal oscillations in the radio flux of GRS 1915+105. Astrophys. J. 474, L123 (1997).

    Article  ADS  Google Scholar 

  14. Klein-Wolt, M. et al. Hard X-ray states and radio emission in GRS 1915+105. Mon. Not. R. Astron. Soc. 331, 745–764 (2002).

    Article  ADS  Google Scholar 

  15. Jiang, P. et al. The fundamental performance of FAST with 19-beam receiver at L band. Res. Astron. Astrophys. 20, 64 (2020).

    Article  ADS  Google Scholar 

  16. Fender, R. P., Belloni, T. M. & Gallo, E. Towards a unified model for black hole X-ray binary jets. Mon. Not. R. Astron. Soc. 355, 1105–1118 (2004).

    Article  ADS  CAS  Google Scholar 

  17. Fender, R. P. et al. Variable circular polarization associated with relativistic ejections from GRS 1915+105. Mon. Not. R. Astron. Soc. 336, 39–46 (2002).

    Article  ADS  Google Scholar 

  18. Beckert, T. & Falcke, H. Circular polarization of radio emission from relativistic jets. Astron. Astrophys. 388, 1106–1119 (2002).

    Article  ADS  Google Scholar 

  19. Kalamkar, M. et al. Detection of the first infra-red quasi-periodic oscillation in a black hole X-ray binary. Mon. Not. R. Astron. Soc. 460, 3284–3291 (2016).

    Article  ADS  CAS  Google Scholar 

  20. Tagger, M. & Pellat, R. An accretion-ejection instability in magnetized disks. Astron. Astrophys. 349, 1003–1016 (1999).

    ADS  Google Scholar 

  21. Chakrabarti, S. K., Debnath, D., Nandi, A. & Pal, P. S. Evolution of the quasi-periodic oscillation frequency in GRO J1655-40: implications for accretion disk dynamics. Astron. Astrophys. 489, L41–L44 (2008).

    Article  ADS  CAS  Google Scholar 

  22. Ingram, A., Done, C. & Fragile, P. C. Low-frequency quasi-periodic oscillations spectra and Lense-Thirring precession. Mon. Not. R. Astron. Soc. 397, L101 (2009).

    Article  ADS  Google Scholar 

  23. Stevens, A. L. & Uttley, P. Phase-resolved spectroscopy of type-B quasi-periodic oscillations in GX 339-4. Mon. Not. R. Astron. Soc. 460, 2796–2810 (2016).

    Article  ADS  Google Scholar 

  24. Miller-Jones, J. C. A. et al. A rapidly changing jet orientation in the stellar-mass black-hole system V404 Cygni. Nature 569, 374–377 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Ma, X. et al. Discovery of oscillations above 200 keV in a black hole X-ray binary with Insight-HXMT. Nat. Astron. 5, 94–102 (2021).

    Article  ADS  Google Scholar 

  26. Hotan, A. W., van Straten, W. & Manchester, R. N. PSRCHIVE and PSRFITS: an open approach to radio pulsar data storage and analysis. PASA 21, 302–309 (2004).

    Article  ADS  Google Scholar 

  27. Astropy Collaboration. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J 156, 123 (2018).

    Article  ADS  Google Scholar 

  28. Ransom, S. PulsaR Exploration and Search TOolkit. Astrophysics Source Code Library http://ascl.net/1107.017 (2011).

  29. Fender, R. et al. MERLIN observations of relativistic ejections from GRS 1915+105. Mon. Not. R. Astron. Soc. 304, 865–876 (1999).

    Article  ADS  Google Scholar 

  30. van Straten, W. & Bailes, M. DSPSR: digital signal processing software for pulsar astronomy. PASA 28, 1–14 (2011).

    Article  ADS  Google Scholar 

  31. van Straten, W., Manchester, R. N., Johnston, S. & Reynolds, J. E. PSRCHIVE and PSRFITS: definition of the Stokes parameters and instrumental basis conventions. PASA 27, 104–109 (2010).

    Article  ADS  Google Scholar 

  32. Heiles, C. Cross-correlation spectropolarimetry in single-dish radio astronomy. Pub. Astron. Soc. Pacific 113, 1243–1246 (2001).

    Article  ADS  Google Scholar 

  33. Heiles, C. et al. Mueller matrix parameters for radio telescopes and their observational determination. Pub. Astron. Soc. Pacific 113, 1274–1288 (2001).

    Article  ADS  Google Scholar 

  34. Davidson, K. & Terzian, Y. Dispersion measures of pulsars. Astron. J. 74, 849–854 (1969).

    Article  ADS  Google Scholar 

  35. Timmer, J. & Koenig, M. On generating power law noise. Astron. Astrophys. 300, 707 (1995).

    ADS  Google Scholar 

  36. Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

    Article  ADS  Google Scholar 

  37. Ding, Y. Z. et al. QPOs and orbital elements of X-ray binary 4U 0115+63 during the 2017 outburst observed by Insight-HXMT. Mon. Not. R. Astron. Soc. 503, 6045–6058 (2021).

    ADS  CAS  Google Scholar 

  38. Chen, X. et al. Wavelet analysis of MAXI J1535-571 with Insight-HXMT. Mon. Not. R. Astron. Soc. 513, 4875–4886 (2022).

    Article  ADS  CAS  Google Scholar 

  39. Chen, X. et al. Wavelet analysis of the transient QPOs in MAXI J1535-571 with Insight-HXMT. Mon. Not. R. Astron. Soc. 517, 182–191 (2022).

    Article  ADS  Google Scholar 

  40. Zhang, P. & Wang, Z. A radio quasi-periodic oscillation of 176 days in the radio-loud narrow-line Seyfert 1 Galaxy J0849+5108. Astrophys. J. 914, 1 (2021).

    Article  ADS  CAS  Google Scholar 

  41. Ren, G. W. et al. Detection of a possible high-confidence radio quasi-periodic oscillation in the BL Lac PKS J2134-0153. Mon. Not. R. Astron. Soc. 506, 3791–3796 (2021).

    Article  ADS  CAS  Google Scholar 

  42. Raiteri, C. M. et al. Optical and radio variability of the BL Lacertae object AO 0235+16: a possible 5-6 year periodicity. Astron. Astrophys. 377, 396–412 (2001).

    Article  ADS  Google Scholar 

  43. Bhatta, G. Radio and gamma-ray variability in the BL lac PKS 0219-164: detection of quasi-periodic oscillations in the radio light curve. Astrophys. J. 847, 7 (2017).

    Article  ADS  Google Scholar 

  44. Jaron, F. et al. Radio QPO in the gamma-ray-loud X-ray binary LS I +61303. Mon. Not. R. Astron. Soc. 471, L110 (2017).

    Article  ADS  CAS  Google Scholar 

  45. Malzac, J. et al. A jet model for the fast IR variability of the black hole X-ray binary GX 339-4. Mon. Not. R. Astron. Soc. 480, 2054–2071 (2018).

    Article  ADS  CAS  Google Scholar 

  46. Chen, L. & Zhang, B. Analytical solution of magnetically dominated astrophysical jets and winds: jet launching, acceleration, and collimation. Astrophys. J. 906, 105 (2021).

    Article  ADS  Google Scholar 

  47. Zhou, J. et al. A 34.5 day quasi-periodic oscillation in γ-ray emission from the blazar PKS 2247-131. Nat. Comm. 9, 4599 (2018).

    Article  ADS  Google Scholar 

  48. Sarkar, A. et al. Multiwaveband quasi-periodic oscillation in the blazar 3C 454.3. Mon. Not. R. Astron. Soc. 501, 50–61 (2021).

    Article  ADS  CAS  Google Scholar 

  49. Jorstad, S. G. et al. Rapid quasi-periodic oscillations in the relativistic jet of BL Lacertae. Nature 609, 265–268 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Negoro, H. et al. MAXI/GSC observes GRS 1915+105 in the X-ray faintest state in the last 22 years. The Astronomer’s Telegram (9 July 2018); https://www.astronomerstelegram.org/?read=11828.

  51. Neilsen, J. et al. A NICER view of a highly absorbed flare in GRS 1915+105. Astrophys. J. 902, 152 (2020).

    Article  ADS  CAS  Google Scholar 

  52. Miller, J. M. et al. An obscured, Seyfert 2-like state of the stellar-mass black hole GRS 1915+105 caused by failed disk winds. Astrophys. J. 904, 30 (2020).

    Article  ADS  CAS  Google Scholar 

  53. Koljonen, K. I. I. & Tomsick, J. A. The obscured X-ray binaries V404 Cyg, Cyg X-1, V4641 Sgr, and GRS1915+105. Astron. Astrophys. 639, A13 (2020).

    Article  ADS  CAS  Google Scholar 

  54. Koljonen, K. I. I. & Hovatta, T. ALMA/NICER observations of GRS 1915+105 indicate a return to a hard state. Astron. Astrophys. 647, A173 (2021).

    Article  ADS  CAS  Google Scholar 

  55. Ratheesh, A. et al. Exploring the accretion-ejection geometry of GRS1915+105 in the obscured state with future X-ray spectro-polarimetry. Astron. Astrophys. 655, A96 (2021).

    Article  CAS  Google Scholar 

  56. Balakrishnan, M. et al. The novel obscured state of the stellar-mass black hole GRS 1915+105. Astrophys. J. 909, 41 (2021).

    Article  ADS  CAS  Google Scholar 

  57. Reid, M. J. et al. A parallax distance to the microquasar GRS 1915+105 and a revised estimate of its black hole mass. Astrophys. J. 796, 2 (2014).

    Article  ADS  Google Scholar 

  58. Motta, S. E. et al. Observations of a radio-bright, X-ray obscured GRS 1915+105. Mon. Not. R. Astron. Soc. 503, 152–161 (2021).

    Article  ADS  CAS  Google Scholar 

  59. Miller-Jones, J. C. A. et al. Multiple relativistic outbursts of GRS1915+105: radio emission and internal shocks. Mon. Not. R. Astron. Soc. 363, 867–881 (2005).

    Article  ADS  Google Scholar 

  60. Rushton, A., Spencer, R. E., Pooley, G. & Trushkin, S. A. A decade of high-resolution radio observations of GRS 1915+105. Mon. Not. R. Astron. Soc. 401, 2611–2621 (2010).

    Article  ADS  CAS  Google Scholar 

  61. Longair, M. S. High Energy Astrophysics. Vol. 2(Cambridge Univ. Press,1994).

  62. Curran, P. A. et al. The evolving polarized jet of black hole candidate Swift J1745-26. Mon. Not. R. Astron. Soc. 437, 3265–3273 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2021YFA0718500 and 2021YFA0718503), the NSFC (12133007, U1838103, U2031117, 12233002 and U2031205), the Youth Innovation Promotion Association CAS (2021055), the CAS Project for Young Scientists in Basic Research (YSBR-006) and the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CAS.

Author information

Authors and Affiliations

Authors

Contributions

W.W., as the principal investigator of the Five-Hundred-Meter Aperture Spherical Radio Telescope observations, led the data analysis and wrote the paper. P.T. and P.Z. did the data analysis. P.W., X.S., J.L. and Z. Zheng provided the help of the radio data analysis and software. W.W., B.Z., Z.D., F.Y., S.Z., Q.L. and X.W. constructed the scientific interpretation of the data and B.Z. contributed to the writing of the paper. P.W., P.J., D.L., Z. Zhu, Z.P. and H.G. aided with the Five-Hundred-Meter Aperture Spherical Radio Telescope observations. J.C., X.C. and N.S. provided the X-ray data. All authors have reviewed the results and manuscript.

Corresponding authors

Correspondence to Wei Wang or Bing Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Stability of FAST performance.

The rms of the flux when the feed source is pointing to the background sky during our FAST observations.

Extended Data Fig. 2 A demonstration of RFI-mitigation experiment using the two-dimensional wavelet algorithm.

a, signal intensity as a function of frequency and time (waterfall) plot of the raw data of GRS 1915+105 between MJD 59239.09766 - 59239.09997 (bottom subplot) and frequency-averaged light curve (upper subplot). b, the red dots at the waterfall plot represent the masked RFI contaminated data by using the two-dimensional wavelet algorithm and then fill these masked data by the median values. c, comparison of frequency bandpass for the raw data and RFI removal result. d, comparison of histogram for raw data (white) and RFI removed data (blue, the red line is the gaussian fitting with the value of Chi-square is less than 5%).

Extended Data Fig. 3 Example of QPO signals and RFI removing simulations.

Upper panels show frequency-averaged light curves, subplots a/b/c are the raw data of sky background monitoring, simulated injection of 5-Hz and 10-Hz QPOs in the broad bands, and the light curve after removing all RFIs, respectively. Bottom panels show the corresponding Fourier power spectra in logarithmic and linear coordinates. Subplot c demonstrates the apparent increase in the significance of the detected QPO signals, i.e. from 4.2 σ to 12.5 σ for 5 Hz; from 1 σ to 3.4 σ for 10 Hz, compared with that in Subplot b. The simulations demonstrate that our RFI removing processes can efficiently reduce the narrow-band RFIs and keep the broad band astrophysical signals.

Extended Data Fig. 4 The 19-beam receiver performance.

Left panel: an absorber is used to cover the receiver feed opening during noise tests. Right panel: no-detection of 5-Hz or 10-Hz apparent peaks from FAST receiver itself on two of frequency-averaged light-curve time segments.

Extended Data Fig. 5 Light curve and dynamic power spectrum with less channels.

Lightcurve, spectral index evolution and dynamic PDS of the radio flux which is calibrated with directly removing RFI peaks from the channels 1400 to 2380. There are 2700 channels left after channel cutting and RFI removing. QPO signals at ~ 5 Hz are fainter compared to the case with about 3400 channels. The Epochs A, B and C have the same definition in Fig. 1, with the time record starting from January 25 2021 01:35:00 (UTC). The index α varies from − 0.6 to − 0.3 during the Epochs.

Extended Data Fig. 6 The DM value of QPO signals.

Amplitude (A) and full width at half maximum (σ) of the fitting Lorentzians for the folded curves evolve with DM. The peak of A/σ is located at DM ~ 255 ± 25pccm−3, which is fitted via a Gaussian function (green dashed line), would indicate the possible dispersion measure of GRS 1915+105.

Extended Data Fig. 7 Light curves and dynamical power spectrum during the QPO phase in 2022.

The light curves of total intensity flux density, LP, CP, PA, spectral index α and dynamic PDS with FAST observations from 2022-06-16:17:42:40 to 2021-06-16:17:47:30 (UTC). The transient QPO at ~ 5 Hz lasting about 80 seconds was detected. During the event, the radio flux was steady at a level around 350 mJy; LP was around 6.5% and increased slightly during the observations; CP was measured at ~ − 1.3%, and the PA was around 96. The spectral index α also evolved from − 0.08 to − 0.01. All error bars are given at the 1σ level.

Extended Data Fig. 8 The distributions for three time scales observed in Epoch B.

The duration distribution of the 5-Hz QPOs (top), separate interval distribution for two neighbour 5-Hz QPOs (middle), and duration distribution of the 10-Hz QPOs (bottom), and the red lines are the best fitting curves with the log-normal distribution.

Extended Data Fig. 9 X-ray monitoring during the radio QPOs.

Top: The X-ray light curves of GRS 1915+105 from 2016 - 2023 based on the SWIFT and MAXI long-term monitor observations. Bottom: The zoom-in version of the light curves around January 25 2021 and June 16 2022. The vertical dashed lines show the time of our FAST observations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, P., Zhang, P., Wang, W. et al. Subsecond periodic radio oscillations in a microquasar. Nature 621, 271–275 (2023). https://doi.org/10.1038/s41586-023-06336-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06336-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing