Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superconductivity and strong interactions in a tunable moiré quasicrystal

Abstract

Electronic states in quasicrystals generally preclude a Bloch description1, rendering them fascinating and enigmatic. Owing to their complexity and scarcity, quasicrystals are underexplored relative to periodic and amorphous structures. Here we introduce a new type of highly tunable quasicrystal easily assembled from periodic components. By twisting three layers of graphene with two different twist angles, we form two mutually incommensurate moiré patterns. In contrast to many common atomic-scale quasicrystals2,3, the quasiperiodicity in our system is defined on moiré length scales of several nanometres. This ‘moiré quasicrystal’ allows us to tune the chemical potential and thus the electronic system between a periodic-like regime at low energies and a strongly quasiperiodic regime at higher energies, the latter hosting a large density of weakly dispersing states. Notably, in the quasiperiodic regime, we observe superconductivity near a flavour-symmetry-breaking phase transition4,5, the latter indicative of the important role that electronic interactions play in that regime. The prevalence of interacting phenomena in future systems with in situ tunability is not only useful for the study of quasiperiodic systems but may also provide insights into electronic ordering in related periodic moiré crystals6,7,8,9,10,11,12. We anticipate that extending this platform to engineer quasicrystals by varying the number of layers and twist angles, and by using different two-dimensional components, will lead to a new family of quantum materials to investigate the properties of strongly interacting quasicrystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Moiré quasiperiodicity.
Fig. 2: Realization of a moiré quasicrystal in two-angle TTG.
Fig. 3: Consequences of moiré quasiperiodicity.
Fig. 4: Strong electronic interactions and superconductivity.

Similar content being viewed by others

Data availability

Source data for all figures in the main text are hosted by the repository given in ref. 47. All other data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Lesser, O. & Lifshitz, R. Emergence of quasiperiodic Bloch wave functions in quasicrystals. Phys. Rev. Res. 4, 13226 (2022).

    Article  CAS  Google Scholar 

  2. Janssen, T., Chapuis, G. & de Boissieu, M. Aperiodic Crystals: From Modulated Phases to Quasicrystals: Structure and Properties (Oxford Univ. Press, 2018).

  3. Steurer, W. Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals. Z. Kristallogr. Cryst. Mater. 219, 391–446 (2004).

    Article  MathSciNet  CAS  MATH  Google Scholar 

  4. Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Wu, F. & Das Sarma, S. Identification of superconducting pairing symmetry in twisted bilayer graphene using in-plane magnetic field and strain. Phys. Rev. B 99, 220507 (2019).

    Article  CAS  ADS  Google Scholar 

  8. Cea, T. & Guinea, F. Coulomb interaction, phonons, and superconductivity in twisted bilayer graphene. Proc. Natl Acad. Sci. USA 118, e2107874118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khalaf, E., Chatterjee, S., Bultinck, N., Zaletel, M. P. & Vishwanath, A. Charged skyrmions and topological origin of superconductivity in magic-angle graphene. Sci. Adv. 7, eabf5299 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Lewandowski, C., Chowdhury, D. & Ruhman, J. Pairing in magic-angle twisted bilayer graphene: role of phonon and plasmon umklapp. Phys. Rev. B 103, 235401 (2021).

    Article  CAS  ADS  Google Scholar 

  11. Chou, Y.-Z., Wu, F., Sau, J. D. & Das Sarma, S. Correlation-induced triplet pairing superconductivity in graphene-based moiré systems. Phys. Rev. Lett. 127, 217001 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Lake, E., Patri, A. S. & Senthil, T. Pairing symmetry of twisted bilayer graphene: a phenomenological synthesis. Phys. Rev. B 106, 104506 (2022).

    Article  CAS  ADS  Google Scholar 

  13. Lifshitz, R. Symmetry breaking and order in the age of quasicrystals. Isr. J. Chem. 51, 1156–1167 (2011).

    Article  CAS  Google Scholar 

  14. Lifshitz, R. Quasicrystals: a matter of definition. Found. Phys. 33, 1703–1711 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  15. Koshino, M. & Oka, H. Topological invariants in two-dimensional quasicrystals. Phys. Rev. Res. 4, 13028 (2022).

    Article  CAS  Google Scholar 

  16. Kraus, Y. E., Ringel, Z. & Zilberberg, O. Four-dimensional quantum Hall effect in a two-dimensional quasicrystal. Phys. Rev. Lett. 111, 226401 (2013).

    Article  PubMed  ADS  Google Scholar 

  17. Tran, D.-T., Dauphin, A., Goldman, N. & Gaspard, P. Topological Hofstadter insulators in a two-dimensional quasicrystal. Phys. Rev. B 91, 85125 (2015).

    Article  ADS  Google Scholar 

  18. Huang, H. & Liu, F. Quantum spin Hall effect and spin Bott index in a quasicrystal lattice. Phys. Rev. Lett. 121, 126401 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Else, D. V., Huang, S.-J., Prem, A. & Gromov, A. Quantum many-body topology of quasicrystals. Phys. Rev. X 11, 41051 (2021).

    CAS  Google Scholar 

  20. Sakai, S., Takemori, N., Koga, A. & Arita, R. Superconductivity on a quasiperiodic lattice: extended-to-localized crossover of Cooper pairs. Phys. Rev. B 95, 24509 (2017).

    Article  ADS  Google Scholar 

  21. Cao, Y. et al. Kohn-Luttinger mechanism driven exotic topological superconductivity on the Penrose lattice. Phys. Rev. Lett. 125, 17002 (2020).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  22. Liu, Y.-B., Zhang, Y., Chen, W.-Q. & Yang, F. High-angular-momentum topological superconductivities in twisted bilayer quasicrystal systems. Phys. Rev. B 107, 14501 (2023).

    Article  CAS  ADS  Google Scholar 

  23. Kamiya, K. et al. Discovery of superconductivity in quasicrystal. Nat. Commun. 9, 154 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Dareau, A. et al. Revealing the topology of quasicrystals with a diffraction experiment. Phys. Rev. Lett. 119, 215304 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Lohse, M., Schweizer, C., Price, H. M., Zilberberg, O. & Bloch, I. Exploring 4D quantum Hall physics with a 2D topological charge pump. Nature 553, 55–58 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Deguchi, K. et al. Quantum critical state in a magnetic quasicrystal. Nat. Mater. 11, 1013–1016 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Oka, H. & Koshino, M. Fractal energy gaps and topological invariants in hBN/graphene/hBN double moiré systems. Phys. Rev. B 104, 35306 (2021).

    Article  CAS  ADS  Google Scholar 

  29. Mao, D. & Senthil, T. Quasiperiodicity, band topology, and moiré graphene. Phys. Rev. B 103, 115110 (2021).

    Article  CAS  ADS  Google Scholar 

  30. Cea, T., Pantaleón, P. A. & Guinea, F. Band structure of twisted bilayer graphene on hexagonal boron nitride. Phys. Rev. B 102, 155136 (2020).

    Article  CAS  ADS  Google Scholar 

  31. Shi, J., Zhu, J. & MacDonald, A. H. Moiré commensurability and the quantum anomalous Hall effect in twisted bilayer graphene on hexagonal boron nitride. Phys. Rev. B 103, 075122 (2021).

    Article  CAS  ADS  Google Scholar 

  32. Meng, H., Zhan, Z. & Yuan, S. Commensurate and incommensurate double moiré interference in twisted trilayer graphene. Phys. Rev. B 107, 35109 (2023).

    Article  CAS  ADS  Google Scholar 

  33. Wang, L. et al. New generation of moiré superlattices in doubly aligned hBN/graphene/hBN heterostructures. Nano Lett. 19, 2371–2376 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Wang, Z. et al. Composite super-moiré lattices in double-aligned graphene heterostructures. Sci. Adv. 5, eaay8897 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Zhu, Z., Carr, S., Massatt, D., Luskin, M. & Kaxiras, E. Twisted trilayer graphene: a precisely tunable platform for correlated electrons. Phys. Rev. Lett. 125, 116404 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Zhang, X. et al. Correlated insulating states and transport signature of superconductivity in twisted trilayer graphene superlattices. Phys. Rev. Lett. 127, 166802 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Khalaf, E., Kruchkov, A. J., Tarnopolsky, G. & Vishwanath, A. Magic angle hierarchy in twisted graphene multilayers. Phys. Rev. B 100, 85109 (2019).

    Article  CAS  ADS  Google Scholar 

  38. Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Hao, Z. et al. Electric field-tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Amorim, B. & Castro, E. V. Electronic spectral properties of incommensurate twisted trilayer graphene. Preprint at https://arxiv.org/abs/1807.11909 (2018).

  42. Koshino, M. Interlayer interaction in general incommensurate atomic layers. New J. Phys. 17, 15014 (2015).

    Article  CAS  Google Scholar 

  43. Park, J. M. et al. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 21, 877–883 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Zhang, Y. et al. Promotion of superconductivity in magic-angle graphene multilayers. Science 377, 1538–1543 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Mackenzie, A. P. et al. Extremely strong dependence of superconductivity on disorder in Sr2RuO4. Phys. Rev. Lett. 80, 161–164 (1998).

    Article  CAS  ADS  Google Scholar 

  46. Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  47. de la Barrera, S. Replication data for: Superconductivity and strong interactions in a tunable moiré quasicrystal. Harvard Dataverse https://doi.org/10.7910/DVN/VZG91R (2023).

  48. Mora, C., Regnault, N. & Bernevig, B. A. Flatbands and perfect metal in trilayer moiré graphene. Phys. Rev. Lett. 123, 26402 (2019).

    Article  CAS  ADS  Google Scholar 

  49. Uri, A. et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 581, 47–52 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  ADS  Google Scholar 

  51. Massatt, D., Carr, S., Luskin, M. & Ortner, C. Incommensurate heterostructures in momentum space. Multiscale Model. Simul. 16, 429–451 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  52. Slater, J. C. & Koster, G. F. Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954).

    Article  CAS  MATH  ADS  Google Scholar 

  53. Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 7, 701–704 (2011).

    Article  CAS  Google Scholar 

  54. Sokolik, A. A., Zabolotskiy, A. D. & Lozovik, Y. E. Many-body effects of Coulomb interaction on Landau levels in graphene. Phys. Rev. B 95, 125402 (2017).

    Article  ADS  Google Scholar 

  55. Turkel, S. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 376, 193–199 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  56. Stauber, T. et al. Interacting electrons in graphene: Fermi velocity renormalization and optical response. Phys. Rev. Lett. 118, 266801 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  57. Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Zuo, W.-J. et al. Scanning tunneling microscopy and spectroscopy of twisted trilayer graphene. Phys. Rev. B 97, 35440 (2018).

    Article  CAS  ADS  Google Scholar 

  59. Huang, X. et al. Imaging dual-moiré lattices in twisted bilayer graphene aligned on hexagonal boron nitride using microwave impedance microscopy. Nano Lett. 21, 4292–4298 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  60. Li, Y. et al. Symmetry breaking and anomalous conductivity in a double-moiré superlattice. Nano Lett. 22, 6215–6222 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Herzog-Arbeitman, J., Chew, A., Efetov, D. K. & Bernevig, B. A. Reentrant correlated insulators in twisted bilayer graphene at 25 T (2π flux). Phys. Rev. Lett. 129, 76401 (2022).

    Article  CAS  ADS  Google Scholar 

  62. Parker, D. et al. Field-tuned and zero-field fractional Chern insulators in magic angle graphene. Preprint at https://arxiv.org/abs/2112.13837 (2021).

  63. Hejazi, K., Liu, C. & Balents, L. Landau levels in twisted bilayer graphene and semiclassical orbits. Phys. Rev. B 100, 35115 (2019).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. E. Feldman, M. Koshino, Z. Zhu, D. K. Bediako, A. H. MacDonald, F. Guinea, L. Levitov, L. Glazman and E. Berg for illuminating discussions. A.U. acknowledges support from the MIT Pappalardo Fellowships and from the VATAT Outstanding Postdoctoral Fellowship in Quantum Science and Technology. M.T.R. acknowledges support from the MIT Pappalardo Fellowships. This work was supported by the Army Research Office MURI W911NF2120147 (A.U.), the National Science Foundation (DMR-1809802; M.T.R. and D.R.-L.), the STC Center for Integrated Quantum Materials (NSF grant no. DMR-1231319; S.C.d.l.B., T.D., P.J.D.C. and N.P.) and the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant GBMF9463 to P.J.-H. This work was performed in part at the Harvard University Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the NSF under NSF ECCS award no. 1541959. K.W. and T.T. acknowledge support from JSPS KAKENHI (grant nos. 19H05790, 20H00354 and 21H05233). R.L. is supported by the Israel Science Foundation (ISF) through grant no. 1259/22.

Author information

Authors and Affiliations

Authors

Contributions

M.T.R., S.C.d.l.B. and D.R.-L. conceived the project. M.T.R. and D.R.-L. fabricated the sample. S.C.d.l.B., A.U., D.R.-L. and M.T.R. performed the measurements. A.U., S.C.d.l.B. and T.D. analysed the data and wrote the manuscript, with input from all co-authors. T.D., P.J.D.C. and N.P. performed the numerical calculations. R.L., L.F., R.C.A. and P.J.-H. discussed and analysed the results, together with A.U., S.C.d.l.B. and T.D. K.W. and T.T. provided hBN crystals. R.C.A. and P.J.-H. supervised the project.

Corresponding authors

Correspondence to Aviram Uri, Sergio C. de la Barrera or Pablo Jarillo-Herrero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Ke Wang, Shengjun Yuan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Extraction of twist angle, θ12.

a, Measured Rxx versus ntot and perpendicular field B at temperature T = 4 K, with fixed D = 0. LLs beyond full filling of the moiré unit cell formed by layers 1 and 2 (ns,12 = 4.7 × 1012 cm−2) emerge from ns,12. b, Extracted LLs used to calibrate the geometric capacitances (together with ntotD behaviour) and used to determine ns,12 (ν12 = ±4).

Extended Data Fig. 2 Layer-resolved constant density traces.

Rxx versus ntot and D at B = 1 T with important estimated traces as guides to the eye, indicated by labels. The dashed red line traces approximate charge-neutrality of layer 3, n3 = 0, indicated by the N = 0 LL of layer 3. A resistance peak appears at the crossing point of n3 = 0 and full filling of the pairwise moiré of layers 1 and 2, ν12 = 4. At this point, ntot ≈ n1 + n2 = ns,12 = 4.7 × 1012 cm−2, confirming our value of θ12 = 1.42° (see b). Semi-transparent traces indicate less well-defined layer character in regions in which the hybridization between the layers is more pronounced. Superconducting pockets (see Fig. 4) are outlined by dotted black lines.

Extended Data Fig. 3 Phenomenological model.

a, Detail of the dashed blue box region in Fig. 2e showing three sets of LLs with different slopes. b, Simulation of the DOS for three Dirac cones with layer hybridization giving rise to renormalized Fermi velocities (v1, v2, v3) = (0.51, 0.2, 1)v3 at B = 1 T. Displacement field is accounted for by adding to each LL spectrum a linear energy shift Δεi = αiD for cones i = {1, 2, 3}. The three colour ranges indicate the partial DOS on the three effective layers, L1, L2, L3. c, Schematic Dirac cones with Fermi velocities vi and rates of potential shift, αi = ∂εi/∂D. d, Example DOS from each effective layer for D = 0, with energy spacings differing between layers owing to different Fermi velocities vi. e, Applying non-zero D shuffles the sequence of LLs because of the different potential shifts, Δεi.

Extended Data Fig. 4 Further characterization of the superconductivity.

a, Temperature dependence of Rxx with D = 0, showing the two superconducting domes for ntot < 0 (measured between contacts 1 and 2 shown in Fig. 2). b, Critical current of the superconductivity versus B measured at ntot = 3.5 × 1012 cm−2 and D = 0.08 V nm−1 (measured between contacts 4 and 5).

Extended Data Fig. 5 Calculated DOS maps.

a, Inverse DOS as a function of density and layer potential, calculated for (θ12, θ23) = (1.4°, −1.9°). Shown are the pairwise moiré angles inferred from the inverse DOS peaks, in excellent agreement with the angles input to the calculation, validating the procedure of extracting the twist angles from the magnetotransport data. b, DOS as a function of density and layer potential. The high DOS region in ntot < 0 generally overlaps with the right superconducting pocket.

Extended Data Fig. 6 Comparison of spectral function approximations.

The spectral function calculated for the tight-binding intralayer dispersion (a), the effective kσ Dirac cone dispersion (b) and momentum-independent interlayer tunnelling (keeping only t0 in the expansion of t(k)) for the kσ dispersion (c). The three methods show excellent agreement.

Extended Data Fig. 7 Matching function for twist angles and model parameters.

a, Matching function d from equation (3) plotted for the target velocities (0.2, 0.51, 1) with t0vF = 0.02 Å−1. b, Matching function versus t0vF assuming the same target velocities, averaged over 100 points in the range 1.35° < θ12 < 1.45°, −1.95° < θ23 < −1.85°. The dominant peak is at 0.016 Å−1.

Extended Data Fig. 8 Electrostatic layer potential calculation.

a, Calculated electric potential energies ϕi (for layer index i) as a function of externally applied electrical displacement field D/ε0 for ntot = 0 using Fermi velocities extracted from the spectral function calculation; used to estimate correspondence between layer potential imbalance Δ and D/ε0 in the main text. Solid lines are shown for εint = 2.5, whereas the shaded regions indicate the extreme cases described in the ‘Estimating layer potentials’ section in Methods. b, Potential energy difference ϕi − ϕ2 between layers i and 2. The relative energy shifts between the layers is the relevant quantity, to first order. Linear fits (dashed lines) illustrate the slight nonlinear deviations.

Extended Data Fig. 9 Flavour-symmetry-breaking phase transition.

a, Rxx versus ntot and B taken at T = 500 mK, showing a Landau fan emerging from moiré filling ν12 ≈ −2, indicating a flavour-symmetry-breaking phase transition near that carrier density. b, Illustration of the layer 3 LLs and their contributions to the Chern number, \({\nu }_{\,{\rm{LL}}}^{3}\), in the gaps between the LLs. c, The situation at ν12 ≈ −2 (a, dashed cyan line). The Fermi energy is in the N = 0 LLs of layers 1 and 2 and in the gap between LL N3 = 0 and N3 = −1 of layer 3. Semi-transparent LLs indicate inaccessible levels before the phase transition (ν12 > −2). d, In the first LL gap beyond the phase transition (a, dashed white line), the Fermi level is in the gap between LLs 0 and −1 in all three layers. Layer 3 contributes C = −2, whereas layers 1 and 2 each contribute C = −1 owing to their reduced degeneracy, accounting for the observed slope C = −4. e, In the C = −12 gap (a, dotted green lines), the Fermi energy is between LLs −1 and −2 in all three layers. The Chern contributions are −1, −2 = −3 for layers 1 and 2 and −2 − 4 = −6 for layer 3, in total −3 − 3 − 6 = −12.

Extended Data Fig. 10 DOS under finite magnetic field.

a, DOS calculation for a 3–4 approximant (see ‘DOS calculation under finite magnetic field’ section in Methods) under B = 1 T. b, Same as a, zooming in on moderate Δ. Dashed black lines approximately enclose the electronic quasiperiodic regimes as a guide to the eye. c, Same as a, zooming in on Δ < 0 and low energies.

Supplementary information

Supplementary Information

The Supplementary Information file includes six sections, Supplementary Figs. 1–4 and further references.

Supplementary Video 1

Calculated 1D spectral function as a function of layer potential.

Supplementary Video 2

Constant energy cuts of the computed spectral function with varying energy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uri, A., de la Barrera, S.C., Randeria, M.T. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023). https://doi.org/10.1038/s41586-023-06294-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06294-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing