Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Universal equation of state for wave turbulence in a quantum gas

Abstract

Boyle’s 1662 observation that the volume of a gas is, at constant temperature, inversely proportional to pressure, offered a prototypical example of how an equation of state (EoS) can succinctly capture key properties of a many-particle system. Such relationships are now cornerstones of equilibrium thermodynamics1. Extending thermodynamic concepts to far-from-equilibrium systems is of great interest in various contexts, including glasses2,3, active matter4,5,6,7 and turbulence8,9,10,11, but is in general an open problem. Here, using a homogeneous ultracold atomic Bose gas12, we experimentally construct an EoS for a turbulent cascade of matter waves13,14. Under continuous forcing at a large length scale and dissipation at a small one, the gas exhibits a non-thermal, but stationary, state, which is characterized by a power-law momentum distribution15 sustained by a scale-invariant momentum-space energy flux16. We establish the amplitude of the momentum distribution and the underlying energy flux as equilibrium-like state variables, related by an EoS that does not depend on the details of the energy injection or dissipation, or on the history of the system. Moreover, we show that the equations of state for a wide range of interaction strengths and gas densities can be empirically scaled onto each other. This results in a universal dimensionless EoS that sets benchmarks for the theory and should also be relevant for other turbulent systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Far-from-equilibrium equation of state and our experiment.
Fig. 2: Constructing an equation of state for a turbulent quantum gas.
Fig. 3: Switching between turbulent steady states.
Fig. 4: Universal equation of state.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the Apollo repository (https://doi.org/10.17863/CAM.96408). Source data are provided with this paper. Any additional information is available from the corresponding authors upon reasonable request.

References

  1. Landau, L. D. and Lifshitz, E. M. Statistical Physics Vol. 5 (Elsevier Science, 2013).

  2. Cugliandolo, L. F., Kurchan, J. & Peliti, L. Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics. Phys. Rev. E 55, 3898 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L. & van Saarloos, W. (eds.) Dynamical Heterogeneities in Glasses, Colloids and Granular Media (Oxford Univ. Press, 2011).

  4. Loi, D., Mossa, S. & Cugliandolo, L. F. Effective temperature of active matter. Phys. Rev. E 77, 051111 (2008).

    Article  ADS  Google Scholar 

  5. Takatori, S. C. & Brady, J. F. Towards a thermodynamics of active matter. Phys. Rev. E 91, 032117 (2015).

    Article  ADS  CAS  Google Scholar 

  6. Ginot, F. et al. Nonequilibrium equation of state in suspensions of active colloids. Phys. Rev. X 5, 011004 (2015).

    CAS  Google Scholar 

  7. Fodor, E. et al. How far from equilibrium is active matter? Phys. Rev. Lett. 117, 038103 (2016).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  8. Edwards, S. F. & McComb, W. D. Statistical mechanics far from equilibrium. J. Phys. A Gen. Phys. 2, 157 (1969).

    Article  ADS  MATH  Google Scholar 

  9. Cardy, J., Falkovich, G., Gawędzki, K., Nazarenko, S. & Zaboronski, O. Non-equilibrium Statistical Mechanics and Turbulence (Cambridge Univ. Press, 2008).

  10. Ruelle, D. P. Hydrodynamic turbulence as a problem in nonequilibrium statistical mechanics. Proc. Natl Acad. Sci. USA 109, 20344–20346 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Picozzi, A. et al. Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys. Rep. 542, 1–132 (2014).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Navon, N., Smith, R. P. & Hadzibabic, Z. Quantum gases in optical boxes. Nat. Phys. 17, 1334–1341 (2021).

    Article  CAS  Google Scholar 

  13. Zakharov, V. E., L’vov, V. S. & Falkovich, G. Kolmogorov Spectra of Turbulence I: Wave Turbulence (Springer, 1992).

  14. Nazarenko, S. Wave Turbulence (Springer, 2011).

  15. Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Emergence of a turbulent cascade in a quantum gas. Nature 539, 72–75 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Navon, N. et al. Synthetic dissipation and cascade fluxes in a turbulent quantum gas. Science 366, 382–385 (2019).

    Article  PubMed  Google Scholar 

  17. Richardson, L. F. Weather Prediction by Numerical Process (Cambridge Univ. Press, 1922).

  18. Hwang, P. A., Wang, D. W., Walsh, E. J., Krabill, W. B. & Swift, R. N. Airborne measurements of the wavenumber spectra of ocean surface waves. Part I: spectral slope and dimensionless spectral coefficient. J. Phys. Oceanogr. 30, 2753–2767 (2000).

    Article  ADS  Google Scholar 

  19. Sorriso-Valvo, L. et al. Observation of inertial energy cascade in interplanetary space plasma. Phys. Rev. Lett. 99, 115001 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Ghashghaie, S., Breymann, W., Peinke, J., Talkner, P. & Dodge, Y. Turbulent cascades in foreign exchange markets. Nature 381, 767–770 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk. SSSR 30, 301 (1941).

    ADS  MathSciNet  Google Scholar 

  22. Grant, H. L., Stewart, R. W. & Moilliet, A. Turbulence spectra from a tidal channel. J. Fluid Mech. 12, 241–268 (1962).

    Article  ADS  MATH  Google Scholar 

  23. Sreenivasan, K. R. On the universality of the Kolmogorov constant. Phys. Fluids 7, 2778–2784 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P. & Hadzibabic, Z. Bose–Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 110, 200406 (2013).

    Article  ADS  PubMed  Google Scholar 

  25. Eigen, C. et al. Observation of weak collapse in a Bose–Einstein condensate. Phys. Rev. X 6, 041058 (2016).

    Google Scholar 

  26. Chantesana, I., Pi neiro Orioli, A. & Gasenzer, T. Kinetic theory of nonthermal fixed points in a Bose gas. Phys. Rev. A 99, 043620 (2019).

    Article  ADS  CAS  Google Scholar 

  27. Zhu, Y., Semisalov, B., Krstulovic, G. & Nazarenko, S. Direct and inverse cascades in turbulent Bose–Einstein condensates. Phys. Rev. Lett. 130, 133001 (2023).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  28. Etrych, J. et al. Pinpointing Feshbach resonances and testing Efimov universalities in 39K. Phys. Rev. Res. 5, 013174 (2023).

    Article  CAS  Google Scholar 

  29. Gałka, M. et al. Emergence of isotropy and dynamic scaling in 2D wave turbulence in a homogeneous Bose gas. Phys. Rev. Lett. 129, 190402 (2022).

    Article  ADS  PubMed  Google Scholar 

  30. Zhang, J. et al. Many-body decay of the gapped lowest excitation of a Bose-Einstein condensate. Phys. Rev. Lett. 126, 060402 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Sano, Y., Navon, N. & Tsubota, M. Emergent isotropy of a wave-turbulent cascade in the Gross–Pitaevskii model. EPL 140, 66002 (2022).

    Article  ADS  Google Scholar 

  32. Tsatsos, M. C. et al. Quantum turbulence in trapped atomic Bose–Einstein condensates. Phys. Rep. 622, 1–52 (2016).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  33. Tsubota, M., Fujimoto, K. & Yui, S. Numerical studies of quantum turbulence. J. Low. Temp. Phys. 188, 119–189 (2017).

    Article  ADS  CAS  Google Scholar 

  34. Middleton-Spencer, H. A. J. et al. Evidence of strong quantum turbulence in Bose-Einstein condensates. Preprint at https://arxiv.org/abs/2204.08544 (2022).

  35. Barenghi, C. F., Middleton-Spencer, H. A. J., Galantucci, L. & Parker, N. G. Types of quantum turbulence. Preprint at https://arxiv.org/abs/2302.05221 (2023).

  36. Micha, R. & Tkachev, I. I. Turbulent thermalization. Phys. Rev. D 70, 043538 (2004).

    Article  ADS  Google Scholar 

  37. Berges, J., Rothkopf, A. & Schmidt, J. Nonthermal fixed points: effective weak coupling for strongly correlated systems far from equilibrium. Phys. Rev. Lett. 101, 041603 (2008).

    Article  ADS  PubMed  Google Scholar 

  38. Prüfer, M. et al. Observation of universal dynamics in a spinor Bose gas far from equilibrium. Nature 563, 217–220 (2018).

    Article  ADS  PubMed  Google Scholar 

  39. Erne, S., Bücker, R., Gasenzer, T., Berges, J. & Schmiedmayer, J. Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature 563, 225–229 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Glidden, J. A. P. et al. Bidirectional dynamic scaling in an isolated Bose gas far from equilibrium. Nat. Phys. 17, 457–461 (2021).

    Article  CAS  Google Scholar 

  41. García-Orozco, A. D. et al. Universal dynamics of a turbulent superfluid Bose gas. Phys. Rev. A 106, 023314 (2022).

    Article  ADS  Google Scholar 

  42. Batchelor, G. K., Townsend, A. A. & Jeffreys, H. The nature of turbulent motion at large wave-numbers. Proc. R. Soc. Lond. A 199, 238–255 (1949).

    Article  ADS  MATH  Google Scholar 

  43. Newell, A. C., Nazarenko, S. & Biven, L. Wave turbulence and intermittency. Phys. D Nonlinear Phenom. 152–153, 520–550 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank C. Castelnovo, J. Dalibard, N. Dogra, K. Fujimoto, M. Gałka, G. Krstulovic, N. Navon, D. Proment and M. Zwierlein for helpful discussions. This work was supported by EPSRC (grant no. EP/N011759/1 and no. EP/P009565/1), ERC (QBox and UniFlat) and STFC (grant no. ST/T006056/1). T.A.H. acknowledges support from the EU Marie Skłodowska-Curie programme (grant no. MSCA-IF- 2018 840081). A.C. acknowledges support from the NSF Graduate Research Fellowship Program (grant no. DGE2040434). C.E. acknowledges support from Jesus College, Cambridge. R.P.S. acknowledges support from the Royal Society. Z.H. acknowledges support from the Royal Society Wolfson Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

L.H.D. led the data collection and analysis, with most significant contributions from G.M. and T.A.H. All authors (L.H.D., G.M., T.A.H., J.A.P.G., J.E., A.C., C.E., R.P.S. and Z.H.) contributed significantly to the experimental setup, the interpretation of the results and the production of the manuscript. Z.H. supervised the project.

Corresponding authors

Correspondence to Lena H. Dogra, Christoph Eigen or Zoran Hadzibabic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Peer review information

Nature thanks Sergey Nazarenko and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Steady-state momentum distributions and comparison with the perturbative WWT theory.

a, Steady-state nk for three different combinations of a and n, with fluxes ϵ chosen such that the cascade amplitudes are similar. The blue shading shows the k range where we fit all our data. For the data shown here, 1/ξ = 0.48 (red), 0.87 (orange) and 1.22 μm−1 (blue). Fitted with γ as a free parameter, these spectra give γ = 3.3 (red), 3.0 (orange) and 3.1 (blue). The solid line shows n0k−3(kξ)−0.2 and the dashed line shows \({n}_{0}{k}^{-3}{\rm{ln}}{(k/{k}_{0})}^{-1/3}\) with the same n0 (chosen such as to offset the curves from the data for clarity), ξ corresponding to the orange data, and k0 = 0.4 μm−1. The error bars show standard errors of measurement. b, Histogram of extracted γ for all spectra corresponding to the 153 points in Fig. 4, when fitting nkkγ with γ as a free parameter. The purple bar indicates the Rb data point. c, Comparison of all the data shown in Fig. 4 with the perturbative WWT theory27 (solid line), without any free parameters. The error bars show standard fitting errors.

Source data

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogra, L.H., Martirosyan, G., Hilker, T.A. et al. Universal equation of state for wave turbulence in a quantum gas. Nature 620, 521–524 (2023). https://doi.org/10.1038/s41586-023-06240-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06240-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing