Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intricate 3D architecture of a DNA mimic of GFP

Abstract

Numerous studies have shown how RNA molecules can adopt elaborate three-dimensional (3D) architectures1,2,3. By contrast, whether DNA can self-assemble into complex 3D folds capable of sophisticated biochemistry, independent of protein or RNA partners, has remained mysterious. Lettuce is an in vitro-evolved DNA molecule that binds and activates4 conditional fluorophores derived from GFP. To extend previous structural studies5,6 of fluorogenic RNAs, GFP and other fluorescent proteins7 to DNA, we characterize Lettuce–fluorophore complexes by X-ray crystallography and cryogenic electron microscopy. The results reveal that the 53-nucleotide DNA adopts a four-way junction (4WJ) fold. Instead of the canonical L-shaped or H-shaped structures commonly seen8 in 4WJ RNAs, the four stems of Lettuce form two coaxial stacks that pack co-linearly to form a central G-quadruplex in which the fluorophore binds. This fold is stabilized by stacking, extensive nucleobase hydrogen bonding—including through unusual diagonally stacked bases that bridge successive tiers of the main coaxial stacks of the DNA—and coordination of monovalent and divalent cations. Overall, the structure is more compact than many RNAs of comparable size. Lettuce demonstrates how DNA can form elaborate 3D structures without using RNA-like tertiary interactions and suggests that new principles of nucleic acid organization will be forthcoming from the analysis of complex DNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall structure of the Lettuce fluorescence turn-on DNA aptamer.
Fig. 2: The Lettuce fluorophore-binding site.
Fig. 3: The Lettuce core and its structure-guided minimization.
Fig. 4: Detection of R-loop formation by Lettuce.
Fig. 5: Comparison to RNA and protein counterparts.

Similar content being viewed by others

Data availability

Atomic coordinates and structure factor amplitudes have been deposited into the Protein Data Bank (PDB) database under accession codes 8FHV (Lettuce–Tl–DFHBI-1T), 8FHX (Lettuce–DFHBI-1T), 8FHZ (Lettuce–DFHO), 8FI0 (Lettuce–DFAME), 8FI1 (Lettuce C20G–DFHO), 8FI2 (Lettuce C20T–DFHBI-1T), 8FI7 (Lettuce C20T–DFHO) and 8FI8 (Lettuce C20T–DFAME). Cryo-EM data have been deposited into the Electron Microscopy Data Bank (EMDB) database under accession code EMD-29329. The following data used in this study are available at the PDB database under accession codes 1EMA (GFP), 4TS0 (Spinach RNA aptamer), 7OAX (Chili RNA aptamer), 1AW4 (AMP-binding DNA aptamer), 1DB6 (argininamide DNA aptamer), 6J2W (OBA3 DNA aptamer), 7W9N (OBA36 DNA aptamer), 5CKK (RNA-ligating deoxyribozyme 9DB1), 5XM8 (RNA-cleaving deoxyribozyme Dz36) and 5OB3 (iSpinach RNA aptamer). For uncropped gels, see Supplementary Fig. 1. Please refer to Supplementary Table 1 for accession codes and references used in the RNA and DNA compactness study. Source data are provided with this paper.

References

  1. Cruz, J. A. & Westhof, E. The dynamic landscapes of RNA architecture. Cell 136, 604–609 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Westhof, E. & Leontis, N. B. An RNA-centric historical narrative around the Protein Data Bank. J. Biol. Chem. 296, 100555 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Assmann, S. M., Chou, H. L. & Bevilacqua, P. C. Rock, scissors, paper: how RNA structure informs function. Plant Cell https://doi.org/10.1093/plcell/koad026 (2023).

  4. VarnBuhler, B. S., Moon, J., Dey, S. K., Wu, J. & Jaffrey, S. R. Detection of SARS-CoV-2 RNA using a DNA aptamer mimic of green fluorescent protein. ACS Chem. Biol. 17, 840–853 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Trachman, R. J. & Ferré-D’Amaré, A. R. Tracking RNA with light: selection, structure, and design of fluorescence turn-on RNA aptamers. Q. Rev. Biophys. 52, e8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Neubacher, S. & Hennig, S. RNA structure and cellular applications of fluorescent light-up aptamers. Angew. Chem. Int. Ed. Engl. 58, 1266–1279 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Rodriguez, E. A. et al. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem. Sci 42, 111–129 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Laing, C. & Schlick, T. Analysis of four-way junctions in RNA structures. J. Mol. Biol. 390, 547–559 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Wilkins, M. H., Stokes, A. R. & Wilson, H. R. Molecular structure of deoxypentose nucleic acids. Nature 171, 738–740 (1953).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Franklin, R. E. & Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature 171, 740–741 (1953).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Robertson, D. L. & Joyce, G. F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467–468 (1990).

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Ferré-D’Amaré, A. R. & Scott, W. G. Small self-cleaving ribozymes. Cold Spring Harbor Perspect. Biol. 2, a003574 (2010).

    Google Scholar 

  16. Serganov, A. & Patel, D. J. Molecular recognition and function of riboswitches. Curr. Opin. Struct. Biol. 22, 279–286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Banco, M. T. & Ferré-D’Amaré, A. R. The emerging structural complexity of G-quadruplex RNAs. RNA 27, 390–402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kappel, K. et al. Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nat. Methods 17, 699–707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Micura, R. & Höbartner, C. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem. Soc. Rev. 49, 7331–7353 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Song, W., Strack, R. L., Svensen, N. & Jaffrey, S. R. Plug-and-play fluorophores extend the spectral properties of Spinach. J. Am. Chem. Soc. 136, 1198–1201 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song, W. et al. Imaging RNA polymerase III transcription using a photostable RNA–fluorophore complex. Nat. Chem. Biol. 13, 1187–1194 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, J. & Jaffrey, S. R. Imaging mRNA trafficking in living cells using fluorogenic proteins. Curr. Opin. Chem. Biol. 57, 177–183 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Su, Y. & Hammond, M. C. RNA-based fluorescent biosensors for live cell imaging of small molecules and RNAs. Curr. Opin. Biotechnol. 63, 157–166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Braselmann, E., Rathbun, C., Richards, E. M. & Palmer, A. E. Illuminating RNA biology: tools for imaging RNA in live mammalian cells. Cell Chem. Biol. 27, 891–903 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gellert, M., Lipsett, M. N. & Davies, D. R. Helix formation by guanylic acid. Proc. Natl Acad. Sci. USA 48, 2013–2018 (1962).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Spiegel, J., Adhikari, S. & Balasubramanian, S. The structure and function of DNA G-quadruplexes. Trends Chem. 2, 123–136 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Phan, A. T., Kuryavyi, V., Luu, K. N. & Patel, D. J. in Quadruplex Nucleic Acids (eds Neidle, S. & Balasubramanian, S.) 81–99 (The Royal Society of Chemistry, 2006).

  28. Dalvit, C. & Vulpetti, A. Weak intermolecular hydrogen bonds with fluorine: detection and implications for enzymatic/chemical reactions, chemical properties, and ligand/protein fluorine NMR screening. Chemistry 22, 7592–7601 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Hermann, T. & Westhof, E. Exploration of metal ion binding sites in RNA folds by Brownian-dynamics simulations. Structure 6, 1303–1314 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Maffeo, C. & Aksimentiev, A. Molecular mechanism of DNA association with single-stranded DNA binding protein. Nucleic Acids Res. 45, 12125–12139 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Anindya, R. Single-stranded DNA damage: protecting the single-stranded DNA from chemical attack. DNA Repair 87, 102804 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Thomas, M., White, R. L. & Davis, R. W. Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc. Natl Acad. Sci. USA 73, 2294–2298 (1976).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Niehrs, C. & Luke, B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat. Rev. Mol. Cell Biol. 21, 167–178 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ormö, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    Article  PubMed  ADS  Google Scholar 

  35. Yang, F., Moss, L. G. & Phillips, G. N. Jr. The molecular structure of green fluorescent protein. Nat. Biotechnol. 14, 1246–1251 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Shimomura, O., Johnson, F. H. & Saiga, Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell Comp. Physiol. 59, 223–239 (1962).

    Article  CAS  PubMed  Google Scholar 

  37. Warner, K. D. et al. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat. Struct. Mol. Biol. 21, 658–663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paige, J. S., Wu, K. Y. & Jaffrey, S. R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Steinmetzger, C., Palanisamy, N., Gore, K. R. & Höbartner, C. A multicolor large Stokes shift fluorogen-activating RNA aptamer with cationic chromophores. Chemistry 25, 1931–1935 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Mieczkowski, M. et al. Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine. Nat. Commun. 12, 3549 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Heim, R., Cubitt, A. B. & Tsien, R. Y. Improved green fluorescence. Nature 373, 663–664 (1995).

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Cate, J. H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Nissen, P., Ippolito, J. A., Ban, N., Moore, P. B. & Steitz, T. A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl Acad. Sci. USA 98, 4899–4903 (2001).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Rupert, P. B. & Ferré-D’Amaré, A. R. Crystal structure of a hairpin ribozyme–inhibitor complex with implications for catalysis. Nature 410, 780–780 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Ferré-D’Amaré, A. R. & Doudna, J. A. RNA folds: insights from recent crystal structures. Annu. Rev. Bioph. Biom. 28, 57–73 (1999).

    Article  Google Scholar 

  46. Jones, C. P. & Ferré-D’Amaré, A. R. Long-range interactions in riboswitch control of gene expression. Annu. Rev. Biophys. 46, 455–481 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. De Gennes, P.-G. In Introduction to Polymer Dynamics 17–27 (Cambridge Univ. Press, 1990).

  48. Fernandez-Millan, P., Autour, A., Ennifar, E., Westhof, E. & Ryckelynck, M. Crystal structure and fluorescence properties of the iSpinach aptamer in complex with DFHBI. RNA 23, 1788–1795 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ponce-Salvatierra, A., Wawrzyniak-Turek, K., Steuerwald, U., Höbartner, C. & Pena, V. Crystal structure of a DNA catalyst. Nature 529, 231–234 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Liu, H. et al. Crystal structure of an RNA-cleaving DNAzyme. Nat. Commun. 8, 2006 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  51. Leontis, N. B. & Westhof, E. Geometric nomenclature and classification of RNA base pairs. RNA 7, 499–512 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu, J. et al. Self-assembly of intracellular multivalent RNA complexes using dimeric Corn and Beetroot aptamers. J. Am. Chem. Soc. 144, 5471–5477 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

    Article  CAS  Google Scholar 

  55. Winter, G. et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr. D Struct. Biol. 74, 85–97 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  58. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. The PyMOL Molecular Graphics System v.2.0 (Schrödinger, 2015).

  60. Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A. PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, S., Olson, W. K. & Lu, X.-J. Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures. Nucleic Acids Res. 47, W26–W34 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J. 478, 4169–4185 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Arab, K. & Niehrs, C. In vitro binding of GADD45A to RNA:DNA hybrids. Methods Mol. Biol. 2528, 277–287 (2022).

    Article  PubMed  Google Scholar 

  71. Lin, C. H. & Patel, D. J. Structural basis of DNA folding and recognition in an AMP–DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP. Chem. Biol. 4, 817–832 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Robertson, S. A., Harada, K., Frankel, A. D. & Wemmer, D. E. Structure determination and binding kinetics of a DNA aptamer−argininamide complex. Biochemistry 39, 946–954 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Xu, G. et al. Structure-guided post-SELEX optimization of an ochratoxin A aptamer. Nucleic Acids Res. 47, 5963–5972 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu, G. et al. Structural insights into the mechanism of high-affinity binding of ochratoxin A by a DNA aptamer. J. Am. Chem. Soc. 144, 7731–7740 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff of beamlines 5.0.1 and 5.0.2 of the Advanced Light Source, Lawrence Berkeley National Laboratory (ALS), and 24-ID-C and 24-ID-E of the Advanced Photon Source, Argonne National Laboratory (APS) for crystallographic data collection; G. Piszczeck and D. Wu of the Biophysics Core of the National Heart, Lung and Blood Institute (NHLBI) for fluorescence and CD; H. Wang and U. Baxa of the NIH Multi-Institute Cryo-EM Facility (MICEF) for cryo-EM data collection assistance; and C. Bou-Nader, N. Demeshkina, A. Elghondakly, C. Jones and R. Trachman for discussions. This research used resources of the APS, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract number DE-AC02-06CH11357. This work is based on research conducted at the Northeastern Collaborative Access Team beamlines, which are funded by the National Institute of General Medical Sciences from the National Institutes of Health (NIH P30 GM124165). The Pilatus 6M detector on the 24-ID-C beam line is funded by a NIH-ORIP HEI grant (S10 RR029205). L.F.M.P. and M.T.B. are Lenfant Postdoctoral Fellows of the NHLBI. This work was supported in part by NIH awards R35NS111631 (to S.R.J.) and T32GM007739 (to J.D.M.) and by the intramural programme of the NHLBI, NIH.

Author information

Authors and Affiliations

Authors

Contributions

S.R.J. and A.R.F.-D. initiated the project. L.F.M.P. performed fluorescence, crystallographic, CD and cryo-EM experiments and data analyses. M.T.B. performed fluorescence and cryo-EM experiments and data analyses. J.D.M. isolated and characterized the Lettuce sequence. X.L. synthesized fluorophores. A.R.F.-D. and L.F.M.P. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Adrian R. Ferré-D’Amaré.

Ethics declarations

Competing interests

S.R.J. is the co-founder and has equity in Chimerna Therapeutics and Lucerna Technologies. Lucerna has licensed technology related to Spinach and other RNA–fluorophore complexes. All other authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Wall-eyed stereoviews of Lettuce-DFHBI-1T complex, composite simulated annealing-omit electron density maps for Lettuce-fluorophore complexes, and solution characterization of Lettuce.

Wall-eyed stereoviews of Figs. 1c and d are shown on a, and b, respectively. Composite simulated annealing-omit 2|Fo| - |Fc| electron density map for the c, Lettuce-DFHBI-1T, d, Lettuce-DFHO, e, Lettuce-DFAME, f, Lettuce(C20G)-DFHO, g, Lettuce (C20T)-DFHBI-1T, h, Lettuce (C20T)–DFHO, i, Lettuce (C20T)–DFAME complexes contoured at 1.0 σ (gray mesh), superimposed on the respective final refined models. j, Graphical G-quartet schematics (ref. 17) for Lettuce. Each row represents the nucleotides of a quartet tier, and columns indicate nucleotide stacks. Upper-case, lower-case, bold, and Italic letters denote anti, syn, 2′-endo and 3′-endo nucleotides, respectively; upside-down letters denote strand polarity inversion with respect to the 5′-most nucleotide in the scheme. Lines connecting nucleotides are loops and bulges, with the number of nucleotides indicated within a circle. k, Circular dichroism spectra of Lettuce–DFHBI1T (green) and unliganded Lettuce (gray) recorded at 21 °C. l, Size-exclusion chromatography-multi-angle light scattering (SEC-MALS) analysis of unliganded Lettuce. Dashed green line is absorbance at 280 nm for unliganded Lettuce, and red line is absorbance at 280 nm for tRNALys control. Colored dots correspond to calculated molar mass (red is tRNALys control, and green is unliganded Lettuce). Exclusion limit (V0) for this column is at 4.5 mL (not shown).

Source Data

Extended Data Fig. 2 Single-particle cryo-EM analysis of the unliganded Lettuce aptamer.

a, Image processing workflow for unliganded Lettuce. Processing steps denoted in red and black represent programs used in either cryoSPARC or RELION, respectively. b, Representative of a motion-corrected micrograph from dataset of 3769 dose-weighted micrographs. c, Representative 2D class averages of unliganded Lettuce from the final 2D classification. d, Global resolution assessment by Fourier shell correlation curve with the 0.143 gold standard threshold. e, Distribution of orientations over azimuth and elevation angles for particles included in the calculation of the final map.

Extended Data Fig. 3 Lettuce–DFHBI-1T in complex with thallium (I), overall structures of Lettuce in complex with DFHO and DFAME, ball-and-stick representation of the tiers of Lettuce, and wall-eyed stereoviews of the binding site.

a, Cartoon representation of the Lettuce–DFHBI-1T Tl+ complex. Arrows denote 5′ to 3′ chain direction, brown and green spheres represent Tl+ and Mg2+, respectively. The bound DFHBI-1T molecule is shown in ball-and-stick representation with translucent spheres. DNA color as in Fig. 1c. b, Orthogonal view of a. c, Density-modified SAD electron density map for the Lettuce–DFHBI-1T Tl+ complex contoured at 1.0 σ (blue mesh), superimposed on the final refined model. d, Emission spectra of Lettuce–DFHBI-1T in the presence of K+ (solid green line) or Tl+ (dashed green line). e, Cartoon representation of the Lettuce–DFHO complex. Arrows indicate 5′ to 3′ chain direction, purple and green spheres represent K+ and Mg2+, respectively. The bound DFHO molecule is shown in ball-and-stick representation with translucent spheres. DNA color as in Fig. 1c. f, Orthogonal view of e. g, Cartoon representation of the Lettuce–DFAME complex. Arrows indicate 5′ to 3′ chain direction, purple and green spheres represent K+ and Mg2+, respectively. The bound DFAME molecule is shown in ball-and-stick representation with translucent spheres. DNA color as in Fig. 1c. h, Orthogonal view of g. i, Ball-and-stick representation of the nine tiers (numbered 1-9 in bold numerals) in the Lettuce core. Some background or interaction nucleotides of different tiers are shown for clarity. Gray and orange dashed lines denote hydrogen bonds and metal coordination, respectively. Secondary structure representation corresponds to that in Fig. 1e. Wall-eyed stereoviews of Figs. 2a–d and are shown on j, k, l, and m, respectively.

Source Data

Extended Data Fig. 4 Fluorescence titrations, overall structures and spectra of Lettuce C20 specificity mutants complexed with different fluorophores, and wall-eyed stereoviews of Lettuce C20 specificity mutants binding sites.

Fluorescence of DFHBI-1T (green), DFHO (yellow), and DFAME (red) titrated with a, Lettuce, b, Lettuce C20G mutant, and c, Lettuce C20T mutant (n = 3 technical replicates). d, Calculated Kd values for a, b, c (mean ± s.d., n = 3 technical replicates). e, Cartoon representation of the C20G Lettuce–DFHO complex. Arrows indicate 5′-to-3′ chain direction, purple and green spheres represent K+ and Mg2+, respectively. Asterisk marks the mutated residue. The bound DFHO molecule is shown in ball-and-stick representation with translucent spheres. DNA color as in Fig. 1c. f, Orthogonal view of e. g, Cartoon representation of the C20T Lettuce–DFHO, i, –DFHBI1T, and k, –DFAME complexes. Arrows indicate 5′ to 3′ chain direction, purple spheres represent K+, and green spheres represent Mg2+. The bound fluorophore molecules are shown in ball-and-stick representation with translucent spheres. Asterisk marks the mutated residue. DNA color as in Fig. 1c. h, Orthogonal view of g. j, Orthogonal view of i. l, Orthogonal view of k. m, Excitation and emission spectra of Lettuce and Lettuce C20T mutant in the presence of DFHBI-1T. n, Excitation and emission spectra of Lettuce, Lettuce C20G mutant, and Lettuce C20T mutant in the presence of DFHO. o, Excitation and emission spectra of Lettuce and Lettuce C20T mutant in the presence of DFAME. Wall-eyed stereoviews of Figs. 2g–j and are shown on p, q, r, and s, respectively.

Source Data

Extended Data Fig. 5 Wall-eyed stereoviews of the Lettuce core, divalent cation dependence of Lettuce fluorescence, and Bibb Lettuce characterization.

Wall-eyed stereoviews of Figs. 3a–d are shown on a, b, c, and d, respectively. e, Fluorescence of Lettuce-DFHBI-1T as a function of Mg2+ concentration (in the presence of 150 mM K+). The half-maximal activity (K1/2) is at 1.41 ± 0.14 mM Mg2+ (mean ± s.d.; n = 3 technical replicates). f, Fluorescence activation of Lettuce–DFHBI-1T in 150 mM K+ alone, or supplemented with 10 mM Mg2+, Ca2+, or Mn2+ (mean ± s.d., n = 3 technical replicates). * denotes P= 0.0002 (two-sided t-test). No significancy (P= 0.251) between K+ + Mg2+ and K+ + Mn2+ (two-sided t-test). g, Electrostatic potential of Lettuce mapped on its molecular surface. Color ramp from 0 to +20 kBT (white to red). h, Green sphere shows Mg2+ ion bound in the P1.1 loop. i, Molecular surface of Lettuce (same color scheme as g) showing the P2.1 loop at its center. j, Green sphere shows Mg2+ ion bound in the P2.1 loop. k, Circular dichroism spectra of Bibb Lettuce–DFHBI1T (green) and unliganded Bibb Lettuce (gray) recorded at 21 °C. l, Fluorescence of DFHBI-1T (green), DFHO (yellow), and DFAME (red) titrated with Bibb Lettuce. Calculated Kd values are shown (mean ± s.d., n = 3 technical replicates). m, Fluorescence of Bibb Lettuce-DFHBI-1T as a function of Mg2+ concentration (in the presence of 150 mM K+). The half-maximal activity (K1/2) is at 0.52 ± 0.06 mM Mg2+ (mean ± s.d.; n = 3 technical replicates). n, Fluorescence activation of Lettuce–DFHBI-1T in 150 mM K+ alone, or supplemented with 10 mM Mg2+, Ca2+, or Mn2+ (mean ± s.d., n = 3 technical replicates). * denotes P = 0.012 (two-sided t-test). No significancy (P = 0.395) between K+ + Mg2+ and K+ + Mn2+ (two-sided t-test). o, Circular dichroism thermal analysis of Lettuce and Bibb Lettuce in the presence and absence of DFHBI1T at 290 nm.

Source Data

Extended Data Fig. 6 R-loop characterization, compactness study of RNA and DNA, and structure and functions of DNA and RNA aptamers.

a, Autoradiogram of 6% non-denaturing PAGE demonstrating R-loop formation (arrow) showed on Fig. 4. For uncropped gel, see Supplementary Fig. 1. The detection of R-loop formation experiment by non-denaturing PAGE was replicated three times. b, Schematic of 260-nt R-loop assay. c, Fluorescence analysis of longer R-loop formation as depicted on b. Fluorescence of DFHBI-1T in the presence of buffer, RNA, 310-bp dsDNA, dsDNA + RNA not co-annealed, dsDNA + RNA co-annealed, normalized to wild-type Lettuce (mean ± s.d., n = 3 technical replicates). d, RNA and DNA compactness study plotted graph using data from Supplementary Table 1. e, Lettuce–DFHBI-1T co-crystal structure (this study). f, NMR structure of the AMP-binding DNA aptamer in complex with two AMP molecules (ref. 71; PDB:1AW4). g, NMR structure of a DNA aptamer bound to argininamide (ref. 72; PDB:1DB6). h, NMR structure of the OBA3 DNA aptamer bound to ochratoxin A (ref. 73; PDB:6J2W). i, NMR structure of the OBA36 DNA aptamer bound to ochratoxin A (ref. 74; PDB:7W9N). j, Fluorescence of wild-type Lettuce used in the crystallographic studies, Split Lettuce, Lettuce with shorter P1 used in fluorescence studies (Supplementary Table 3), RNA comprised of the Lettuce sequence, and split Lettuce comprised by DNA (34 nts) and RNA (16 nts of 3' terminus) in the presence of DFHBI-1T (mean ± s.d., n = 3 technical replicates). Asterisk denotes P = 0.002 (two-sided t-test). No significant difference (P= 0.407) between Lettuce w.t. and Lettuce with shorter P1 (two-sided t-test). k, Pucker angles of each deoxynucleotide of Lettuce–fluorophore complexes (mean of 8 structures). l, Pucker angles of each deoxynucleotide of the RNA-ligating deoxyribozyme 9DB1 (ref. 49; PDB:5CKK). Puckers of core deoxynucleotides are in magenta; puckers of deoxynucleotides that hybridize to the RNA product strand are in cyan. m, Pucker angles of each deoxynucleotide of the RNA-cleaving deoxyribozyme Dz36 (ref. 50; PDB:5XM8). Puckers of core deoxynucleotides are in orange; puckers of deoxynucleotides that hybridize to the RNA substrate strand are in gray. n, Pucker angles for each ribose of the RNA fluorogenic aptamer iSpinach in complex with DFHBI (ref. 48; PDB:5OB3). Individual puckers for all four aptamers are in Supplementary Table 2.

Source Data

Extended Data Table 1 Crystallographic statistics
Extended Data Table 2 Crystallographic statistics
Extended Data Table 3 Cryo-EM data collection and processing parameters for unliganded Lettuce

Supplementary information

Supplementary Information

This file contains Supplementary Fig. 1, Supplementary Tables 1 and 2 and Supplementary References.

Reporting Summary

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passalacqua, L.F.M., Banco, M.T., Moon, J.D. et al. Intricate 3D architecture of a DNA mimic of GFP. Nature 618, 1078–1084 (2023). https://doi.org/10.1038/s41586-023-06229-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06229-8

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing